ANALIZOR DE REŢELE ELECTRICE TRIFAZATE

Ați achiziționat un analizor de rețele electrice trifazate C.A 8331 sau C.A 8333 (Qualistar+) iar noi vă mulțumim pentru încrederea acordată.

Pentru a utiliza la maximum aparatul dvs.:

- **citiți** cu atenție aceste instrucțiuni de utilizare,
- respectați precauțiile privind utilizarea.

ATENȚIE, risc de PERICOL! Operatorul trebuie să consulte prezentele instrucțiuni de fiecare dată când întâlnește acest simbol de pericol. Aparat protejat cu o izolație dublă. Sistem antifurt Kensington. Împământare. Priză USB. Produsul este declarat ca reciclabil, ca urmare a analizei ciclului său de viață conform standardului ISO14040. CE Marcajul CE arată conformitatea cu directivele europene, în special cele privind tensiunile joase și compatibilitatea electromagnetică. Chauvin Arnoux a studiat acest aparat în cadrul unui demers global Eco-Conception (proiectare ecologică). Analiza ciclului de viață a permis stăpânirea și optimizarea efectelor acestui produs asupra mediului. Produsul răspunde mai exact unor objective privind reciclarea si valorificarea, care sunt superioare celor din cadrul reglementării. Ø Coșul de gunoi barat arată că, în cadrul Uniunii Europene, produsul face obiectul unei colectări selective, conform directivei DEEE 2002/96/CE: acest aparat nu trebuie tratat ca deseu menajer.

Definirea categoriilor de măsurare:

- Categoria a IV-a de măsurare corespunde măsurătorilor realizate la sursa instalației de joasă tensiune. Exemplu: intrarea energiei, contoarele și dispozitivele de protecție.
- Categoria a III-a de măsurare corespunde măsurătorilor realizate în cadrul instalatiei clădirii.
- Exemplu: tabloul de distributie, disjunctoarele, utilajele sau aparatele industriale fixe.
- Categoria a II-a de măsurare corespunde măsurătorilor realizate în circuitele branşate direct la instalația de joasă tensiune. Exemplu: alimentarea aparatelor electrocasnice și a utilajelor portabile.

PRECAUȚII PRIVIND UTILIZAREA

Acest aparat este conform standardului de siguranță IEC 61010-2-030, cablurile sunt conform IEC 61010-031, iar senzorii de curent sunt conform IEC 61010-2-032, pentru tensiuni de până la 600 V în categoria a IV-a, respectiv 1.000 V în categoria a III-a. Nerespectarea recomandărilor privind siguranța poate atrage după sine riscuri de șoc electric, incendiu, explozie și distrugerea aparatului și instalațiilor sale.

- Operatorul şi/sau autoritatea responsabilă trebuie să citească cu atenție şi să înțeleagă bine diversele precauții privind utilizarea. Cunoaşterea bună şi deplina conștientizare a riscurilor privind pericolele electrice sunt indispensabile pentru orice utilizare a acestui aparat.
- Dacă folosiți acest instrument într-un mod care nu este specificat, protecția pe care o asigură poate fi compromisă și, prin urmare, sunteți pus în pericol.
- Nu utilizați acest aparat în rețele de tensiuni sau de categorii superioare celor menționate.
- Nu utilizați aparatul dacă pare deteriorat, incomplet sau închis necorespunzător.
- Nu utilizați aparatul dacă este umed la nivelul bornelor sau tastaturii. Uscați-l în prealabil.
- Înainte de fiecare utilizare, verificați ca izolația și cablurile, cutia și accesoriile să fie în stare bună. Orice element cu izolația deteriorată (chiar și parțial) trebuie reparat sau aruncat.
- Înainte de a utiliza aparatul, verificați ca acesta să fie perfect uscat. Dacă este umed, trebuie neapărat uscat complet, înainte de orice conectare sau punere în funcțiune.
- Utilizați exact cablurile și accesoriile furnizate. Utilizarea cablurilor (sau a accesoriilor) de tensiune sau de categorie inferioară reduce tensiunea sau categoria ansamblului aparat + cabluri (sau accesorii) la cea a cablurilor (sau a accesoriilor).
- Utilizați sistematic dispozitive individuale de protecție de siguranță.
- Nu țineți mâinile aproape de bornele aparatului.
- În timpul manevrării cablurilor, sondelor de verificare și cleștilor crocodil, nu puneți degetele dincolo de apărătoarea fizică.
- Utilizați numai blocurile de alimentare de la rețea și pachetele de baterii furnizate de producător. Aceste elemente cuprind dispozitive de siguranță specifice.

Anumiți senzori de curent nu permit implementarea sau extragerea pe conductori neizolați aflați la tensiuni periculoase: consultați instrucțiunile senzorului și respectați instrucțiunile privind manipularea.

CUPRINS

1.	PRIMA PUNERE ÎN FUNCȚIUNE	4
	1.1. Dezallibalatea	4
	1.2. Incarcarea bateriei	5
-	1.3. Alegerea limbil	5
2.	PREZENTAREA APARATULUI	6
	2.1. Funcționalități	6
	2.2. Vedere generală	8
	2.3. Butonul pornit/oprit	8
	2.4. Ecran	9
	2.5. Tastele din cadrul tastaturii	. 10
	2.6. Conectorii	. 11
	2.7. Alimentarea	.12
	2.8. Suportul	.12
	2.9. Abrevieri	.12
3.		.14
•.	3.1 Punerea în functiune	14
	3.2 Configurarea	14
	3.3 Montarea cablurilor	15
	3.4 Eupetiile aparatului	17
		. 17
4.	4.1 Moniul configurare	10
	4.1. Meniul configurare	. 10
	4.2. Limba de alișare	. 18
	4.3. Data/ora	.18
	4.4. Afişajul	. 19
	4.5. Metodele de calcul	.20
	4.6. Conectarea	.22
	4.7. Senzorii și divizoarele	.24
	4.8. Modul tranzitoriu (numai pentru C.A 8333)	.26
	4.9. Modul tendință	.27
	4.10. Modul de alarmă (numai pentru C.A 8333)	.29
	4.11. Ștergerea datelor	. 30
	4.12. Informații	. 30
5.	MODUL TRANZITORIU (NUMAI PENTRU C.A 8333).	.31
	5.1. Programarea si lansarea unei cercetări	.31
	5.2. Vizualizarea unui tranzient	.32
	5.3. Anularea unei cercetări a tranzientilor	.33
	5.4. Anularea unui tranzient	.33
6.	ARMONICE	.34
•.	6 1 Tensiunea simplă	34
	6.2 Curent	35
	6.3. Putere aparentă	36
	6.4 Tensiunea compusă	.00
	6.5 Modul expert (numai pentru C A 8333)	38
7		40
1.	7 1 Măgurarea valarii oficaza reala	.40
	7.1. Masurarea distorgiunii armonica totala	.40
	7.2. Măsurarea fastarului da vârf	.42
	7.3. Masurarea lactorului de vari	.43
	7.4. Masurarea valorilor extreme și medil ale tensiur	
		.44
		.46
_	7.6. Atişarea diagramei Fresnel	.47
8.	MODUL DE ALARMA (NUMAI PENTRU C.A 8333)	.49
	8.1. Configurarea modului de alarmă	.49
	8.2. Programarea unei campanii de alarme	.49
	8.3. Vizualizarea listei campaniilor	. 50
	8.4. Vizualizarea listei alarmelor	. 50
	8.5. Anularea unei campanii de alarme	.51
	8.6. Ștergerea tuturor campaniilor de alarme	.51

A MARIU TENRINTĂ	= 0
9. MODUL IENDINȚA	
9.1. Programarea și lansarea unei înregistrări	52
9.2. Configurarea modului tendință	52
9.3. Vizualizarea listei înregistrărilor	53
9.4. Ștergerea înregistrărilor	53
9.5. Vizualizarea înregistrărilor	53
10. MODUL PUTERI SI ENERGII	60
10.1. Filtrul 3L,	60
10.2. Filtrele 1. 2 si 3	61
10.3 Filtrul Σ	62
10.4. Lansarea contorizării energiei	63
10.5 Anularea contorizării energiei	64
10.6. Aducerea la zero a contorizării energiei	64
	65
11.1 Estagrafiaras parapului	
11.2. Costionarea fotografiilor ograpului	05
	05
13. SOFTWARE-UL PENTRU EXPORTUL DATELOR	
14. CARACTERISTICI GENERALE	68
14.1. Condiții privind mediul	68
14.2. Caracteristici mecanice	68
14.3. Categorii de supratensiune conform	
IEC 61010-1	68
14.4. Compatibilitatea electromagnetică (CEM)	69
14.5. Alimentare	69
15. CARACTERISTICI FUNCȚIONALE	71
15.1. Condiții de referință	71
15.2. Curentul nominal în funcție de senzor	71
15.3. Caracteristici electrice	72
16. ANEXE	84
16.1. Formule matematice	.84
16.2 Surse de distributie acceptate de aparat	99
16.3 Histerezis	99
16.4 Valorile minime ale scării formelor de undă si	
valorile eficace minime	99
16.5 Diagrama cu 4 cadrane	100
16.6 Mecanismul de declansare a cantărilor	100
tranzientilor	100
16.7 Glosar	100
	101
17. INTREȚINEREA	103
	103
17.2. Intreținerea senzorilor	103
	103
17.4. Iniocuirea peliculei ecranului	105
17.5. Cardul de memorie	106
17.6. Verificarea metrologică	107
17.7. Reparații	107
17.8. Actualizarea software-ului încorporat	107
18. GARANȚIE	108
19. PENTRU A COMANDA	109
19.1. Analizor de rețele electrice trifazate	109
19.2. Accesorii	109
19.3. Piese de schimb	109

1. PRIMA PUNERE ÎN FUNCȚIUNE

1.1. DEZAMBALAREA

Reper	Denumire	Cantitate
1	Cabluri de siguranță banană-banană dreapta-dreapta negre, atașate cu legătură velcro.	4
2	Clești crocodil negri.	4
3	Instrucțiuni de funcționare pe CD-ROM.	1
4	Cablu USB tip A-B.	1
5	Bloc de alimentare de la rețea specific și cablu de alimentare de la rețea.	1
6	Sacoșă de transport nr. 22.	1
7	Set de spioni și inele pentru marcarea cablurilor și senzorilor de curent în funcție de faze.	12
8	Fișă tehnică de siguranță în mai multe limbi.	1
9	Atestat de verificare.	1
10	Ghid de pornire rapidă.	1
(11)	Software Power Analyser Transfer (PAT2) pe CD-ROM.	1
(12)	Baterie.	1
13	C.A 8333 sau C.A 8331, cu sau fără senzor de curent, în funcție de comandă.	1

1.2. ÎNCĂRCAREA BATERIEI

Instalați bateria în aparat (vezi ghidul de inițiere rapidă sau § 17.3). Înainte de prima utilizare, începeți prin a încărca complet bateria.

Scoateți capacul prizei și conectați la aparat jack-ul blocului de alimentare respectiv. Conectați cablul de alimentare la blocul de alimentare și la rețea.

Butonul **b** se aprinde și nu se va stinge decât la deconectarea prizei.

Atunci când bateria este complet descărcată, durata încărcării este de aproximativ 5 ore.

1.3. ALEGEREA LIMBII

Înainte de a utiliza aparatul, începeți prin a alege limba în care doriți ca acesta să afișeze mesajele.

Apăsați pe butonul verde pentru a aprinde aparatul.

Apăsați pe tasta Configurare.

Apăsați pe tasta galbenă a aparatului, corespunzătoare limbii dorite.

Această tastă permite trecerea la pagina următoare.

Figura 1 : Ecranul Configurare

2.1. FUNCȚIONALITĂȚI

C.A 8331 sau C.A 8333 (Qualistar+) este un analizor de rețele electrice trifazate, cu afișaj grafic color și baterie reîncărcabilă integrată.

Rolul său este triplu. Permite:

- măsurarea valorilor eficace, a puterilor și perturbațiilor rețelelor de distribuție electrică.
- obținerea unei imagini instantanee a principalelor caracteristici ale unei rețele trifazate.
- urmărirea variațiilor în timp ale diverşilor parametri.

Eroarea de măsurare a aparatului este sub 1% (fără a ține cont de erorile datorate senzorilor de curent). La aceasta se adaugă o mare flexibilitate, datorită alegerii unor senzori diferiți pentru măsurători de câțiva miliamperi (MN93A) până la câțiva kiloamperi (Amp*FLEX*®).

Aparatul este compact și rezistent la șocuri.

Ergonomia și simplitatea interfeței cu utilizatorul îl fac plăcut de folosit.

C.A 8331 sau C.A 8333 este destinat tehnicienilor și inginerilor din echipele de control și de întreținere a instalațiilor și rețelelor electrice.

2.1.1. FUNCȚII DE MĂSURARE

Principalele măsurători sunt:

- Măsurarea valorilor eficace ale tensiunilor alternative de până la 1.000 V între borne. Prin utilizarea divizoarelor, aparatul poate atinge sute de gigavolți.
- Măsurarea valorilor eficace ale curenților alternativi de până la 10.000 A. Prin utilizarea divizoarelor, aparatul poate atinge sute de kiloamperi.
- Măsurarea valorii continue a tensiunilor și curenților.
- Măsurarea valorilor eficace pe semiperioada minimă și maximă, la tensiune și la curent (fără curent de nul).
- Măsurarea valorilor de vârf pentru tensiuni și curenți (fără curent de nul).
- Măsurarea frecvenței rețelelor la 50 Hz și 60 Hz.
- Măsurarea factorului de vârf al curentului și al tensiunii (fără curent de nul).
- Calculul factorului de pierdere armonică (FHL), aplicarea la transformatoare în prezența curenților armonici.
- Calculul factorului K (FK), aplicarea la transformatoare în prezența curenților armonici.
- Măsurarea nivelurilor de distorsiune armonică totală în raport cu fundamentala (THD în %f), pentru curenți și tensiuni (fără curent de nul).
- Măsurarea nivelului de distorsiune armonică totală în raport cu valoarea RMSAC (THD în %r), pentru curenți și tensiuni (fără curent de nul).
- Măsurarea puterilor active, reactive (capacitive și inductive), neactive, deformante și aparente per fază și cumulate.
- Măsurarea factorului de putere (PF) şi a factorului de deplasare (DPF sau cos Φ).
- Măsurarea valorii eficace deformante (d) pentru curenți și tensiuni (fără curent de nul).
- Măsurarea scânteierii pe termen scurt a tensiunilor (PST).
- Măsurarea energiilor active, reactive (capacitive și inductive), neactive, deformante și aparente.
- Măsurarea armonicelor pentru curenți și tensiuni (fără curent de nul) până la rangul 50: valoarea eficace, procentaje în raport cu fundamentala (%f) sau cu valoarea eficace totală (%r) (numai pentru C.A 8333), minime și maxime și nivelul secvenței armonice (numai pentru C.A 8333).
- Măsurarea puterilor aparente armonice până la rangul 50: procentaje în raport cu puterea aparentă fundamentală (%f) sau cu puterea aparentă totală (%r) (numai pentru C.A 8333), minima şi maxima nivelului unui rang.
- Calcularea curentului eficace prin nul, pornind de la curenții măsurați pe fazele unui sistem trifazat.

2.1.2. FUNCȚII DE AFIȘARE

- Afişarea formelor de undă (tensiuni și curenți).
- Afișarea histogramelor frecvențelor (tensiuni și curenți) (fără curent de nul)
- Fotografiile ecranului (maximum 12).
- Funcții tranzitorii (numai pentru C.A 8333). Detectarea și înregistrarea tranzienților (până la 51) în timpul unui interval de timp și la o dată alese (programarea începutului și sfârșitului cercetării tranzienților). Înregistrarea a 4 perioade complete (una înainte de evenimentul declanșator al tranzientului și trei după) pe cele 6 canale de achiziție.
- Funcția de înregistrare a tendinței (data logging). 2 Go memorie cu indicarea orei și a datei și programarea începutului și sfârșitului unei înregistrări maximum 100 înregistrări. Reprezentarea sub formă de histograme sau curbe a valorii medii a numeroși parametri în funcție de timp, cu sau fără MIN-MAX.
- Funcția de alarmă (numai pentru C.A 8333). Lista alarmelor înregistrate (maximum 4662 alarme), în funcție de pragurile programate în meniul de configurare. Programarea începutului și sfârșitului unei supravegheri a alarmelor – maximum 2 supravegheri.

2.1.3. FUNCȚII DE CONFIGURARE

- Reglarea datei și orei.
- Reglarea luminozității.
- Alegerea culorilor curbelor.
- Alegerea gestionării stingerii ecranului.
- Alegerea afişajului în modul de noapte.
- Alegerea metodelor de calcul (mărimi neactive descompuse sau nu, alegerea coeficienților de calcul pentru factorul K, alegerea referinței nivelelor armonice (numai pentru C.A 8333)).
- Alegerea sistemului de distribuție (monofazat, bifazat, trifazat cu sau fără măsurarea nulului) și a metodei de conectare (standard sau 2 elemente).
- Configurarea înregistrărilor, alarmelor (numai pentru C.A 8333) și a tranzienților.
- Ștergerea datelor (totală sau parțială).
- Afișarea identificatorilor software și materiali ai aparatului.
- Alegerea limbii.
- Afişarea senzorilor de curent detectați sau nedetectați, negestionați, simulați sau nesimulabili (metoda de conectare cu 2 elemente și conectarea trifazată cu 4 fire). Reglarea divizoarelor de tensiune și curent, a rapoartelor de transducție și a sensibilității.

2.2. VEDERE GENERALĂ

Figura 2 : Vedere generală a Qualistar+

2.3. BUTONUL PORNIT/OPRIT

Aparatul funcționează fie pe baterie, fie alimentat de la rețea. O apăsare pe buton buton

O nouă apăsare pe tastă be determină stingerea aparatului. Dacă aparatul este în curs de înregistrare, contorizare a energiei, cercetare a tranzienților, alarmă și/sau de achiziție a solicitării de curent, atunci solicită o confirmare.

Selectați **Da** sau **Nu** cu tastele galbene corespunzătoare, apoi apăsați pe tasta *→* pentru confirmare.

- Dacă este selectat Nu, atunci înregistrările continuă.
- Dacă este selectat Da, atunci datele înregistrate până în momentul respectiv sunt finalizate, iar aparatul se stinge.

2.4. ECRAN

2.4.1. PREZENTARE

Ecranul TFT de 320x240 pixeli (1/4 VGA) afișează valorile măsurate asociate curbelor, parametrii aparatului, selecția curbelor, valorile instantanee ale semnalelor și selectarea tipului de măsurătoare. La pornirea aparatului este afișat automat ecranul *Forme de undă*. Informațiile privind acest ecran sunt descrise în § 7.

Figura 3 : Exemplu de ecran de vizualizare

Gestionarea stingerii ecranului este aleasă de către utilizator din meniul Afișare al modului Configurare (vezi § 4.4.3).

2.4.2. PICTOGRAMELE TASTELOR CU FUNCȚII

Pe afișaj sunt folosite următoarele pictograme corespunzătoare tastelor galbene cu funcții:

Pictograme	Denumire
V	Mod de tensiune simplă.
A	Mod de curent simplu.
S	Mod de putere.
U	Mod de tensiune compusă.
var	Gestionarea descompunerii mărimilor ne- active.
FK	Alegerea coeficienților factorului K.
%f-%r	Alegerea referinței pentru nivele armonice ale fazelor (numai pentru C.A 8333).
CF	Afișarea factorilor de vârf și a curbelor.
RMS	Afișarea valorilor eficace și a curbelor.
PEAK	Afişarea valorilor VÂRF și a curbelor.
THD	Afișarea nivelelor de distorsiune armonică și a curbelor
PF	Afișarea PF, cos Φ (DPF), tan Φ și Φ .
W	Afişarea puterilor și mărimilor asociate (PF, cos Φ , DPF, tan Φ și Φ_{VA}).
Wh	Afișarea contoarelor de energie.
[Σ]	Activarea și dezactivarea calculului energiei.
_ •	Zoom înainte.
P	Zoom înapoi.
•	Reglarea luminozității.
	Alegerea culorilor canalelor de măsurare.
	Gestionarea stingerii ecranului.

Pictograme	Denumire
C	Afișare în modul de noapte.
	Modul de programare a unei înregistrări.
2	Modul de consultare a unei înregistrări.
۲	Lansarea înregistrării.
-ID	Programarea rapidă și lansarea unei înre- gistrări.
0	Suspendarea înregistrării.
₾	Oprirea funcției în curs.
<u></u>	Coș pentru anularea elementelor.
9 00 0	Scurtătură către modul de parametrizare a înregistrării
Ŧ	Activarea și dezactivarea selectării filtrului de afișare a listei tranzienților (numai pentru C.A 8333).
<u> </u>	Afișarea valorilor medii și a extremelor lor.
> † <	Deplasarea cursorului la prima apariție a valorii maxime a mărimii afișate.
<u>> ↓ <</u>	Deplasarea cursorului la prima apariție a valorii minime a mărimii afișate.
	Afișarea simultană a tuturor mărimilor de tensiune și curent (RMS, DC, THD, CF, PST, FHL, FK).
٠	Selectarea tuturor elementelor.
0	Deselectarea tuturor elementelor.

Pictograme	Denumire
	Modul Tranzitoriu (numai pentru C.A 8333).
40	Afişarea diagramei Fresnel a semnalelor.
>t=0<	Deplasarea cursorului la data de declanșare a tranzientului (numai pentru C.A 8333).
>t=-T<	Deplasarea cursorului cu o perioadă a sem- nalului înainte de data declanșării tranzien- tului (numai pentru C.A 8333).
⊚⊸⊅	Energii consumate la încărcare.
⊙ ⊷0	Energii generate de încărcare.

Pictograme	Denumire
? 1	Pagina ecranului 1 a funcției de ajutor.
?2	Pagina ecranului 2 a funcției de ajutor.
? 3	Pagina ecranului 3 a funcției de ajutor.
?4	Pagina ecranului 4 a funcției de ajutor.
104	Configurarea precedentă.
‡⊕⊊,	Configurarea următoare.
() I	Pagina ecranului precedent.
E)	Pagina ecranului următor.

2.5. TASTELE DIN CADRUL TASTATURII

2.5.1. TASTELE CU FUNCȚII (TASTELE GALBENE)

Aceste 6 taste permit activarea funcției sau instrumentului reprezentat de pictograma corespunzătoare de pe ecran.

2.5.2. TASTELE DE NAVIGARE

Un bloc de 4 taste de direcție, o tastă de validare și o tastă de revenire permit navigarea prin meniuri.

Reprezentare	Funcție
	Tastă de direcție sau de navigare în sus.
•	Tastă de direcție sau de navigare în jos.
•	Tastă de direcție sau de navigare la dreapta.
•	Tastă de direcție sau de navigare la stânga.
4	Validează selecția.
6	Tasta de revenire.

2.5.3. TASTELE PENTRU MODURI (TASTE VIOLETE)

Acestea permit accesul la anumite moduri:

Reprezentare	Funcție	Vezi
	Modul Tranzitoriu (numai pentru C.A 8333) (tăieri, paraziți etc.).	§ 5
	Afișarea histogramelor legate de armonice: reprezentarea nivelelor armonicelor tensiunilor, curenților și puterilor, rang cu rang, determinarea curenților armonici produși de sarcinile nelini- are, analiza problemelor create de armonice în funcție de rangul acestora (încălzirea nulurilor, conductorilor, motoarelor etc.).	§ 6
	Afișarea formei de undă a tensiunii și curentului, afișarea minimelor și maximelor, tabelelor rezumative, determinarea rotației fazelor.	§ 7
4	Modul de alarmă (numai pentru C.A 8333): lista alarmelor înregistrate în funcție de pragurile programate la configurarea acestora, înregistrarea întreruperilor rețelei cu rezoluția de o semipe- rioadă (Vrms, Arms, Urms), determinarea depășirilor consumului de energie, controlul respectării contractului privind calitatea energiei furnizate.	§ 8
≱~~ ,	Modul tendințelor: înregistrarea parametrilor selectați în meniul Configurare.	§ 9
W	Afișarea mărimilor legate de puteri și energii.	§ 10

Trei taste corespund unor moduri în timp real: W, I.... și 🖂.

În fiecare dintre aceste moduri, cercurile colorate pe fond alb ①, în care sunt înscrise numerele sau tipurile de canale, sunt indicatori de saturație: fondul cercului se colorează atunci când canalul măsurat este potențial saturat 0.

Atunci când discul de identificare corespunde unui canal simulat (de ex., în trifazat cu 3 fire, cu selectarea A1A2, metoda cu 2 elemente, vezi conectările § 4.6), acest canal este potențial saturat, dacă cel puțin un canal care folosește la calcularea acestuia este potential saturat.

În același fel, dacă discul de saturație corespunde unui canal de tensiune compusă, atunci acesta din urmă este potențial saturat dacă cel puțin unul dintre canalele de tensiune simplă care servește la calcularea sa este potențial saturat.

2.5.4. CELELALTE TASTE

Funcțiile celorlalte taste ale tastaturii sunt următoarele:

Reprezentare	Funcție	Vezi
See S	Tasta de configurare.	§ 4
6	Fotografia ecranului în curs și accesarea ecranelor deja stocate.	§ 11
?	Tasta de ajutor: informează cu privire la funcțiile și simbolurile utilizate pentru modul de afișare în curs.	§ 12

2.6. CONECTORII

E3N, etc.).

2.6.1. BORNELE DE CONECTARE

Situați în partea superioară, acești conectori sunt repartizați după cum urmează:

Figura 4 : Bornele de conectare

2.6.2. CONECTORII LATERALI

Situați în partea dreaptă a aparatului, acești conectori sunt utilizați după cum urmează:

Figura 5 : Conectorii laterali

2.7. ALIMENTAREA

Pictograma bateriei, situată în partea superioară dreaptă a ecranului, indică starea de încărcare a bateriei. Numărul de bare din interiorul pictogramei este proporțional cu nivelul de încărcare.

Baterie încărcată.

Baterie descărcată.

Bare mobile: baterie în curs de încărcare.

O bară roşie: starea bateriei este necunoscută, deoarece nu a fost niciodată încărcată complet.

Aparatul este conectat la rețea fără baterie.

Atunci când capacitatea bateriei este prea redusă, este afișat mesajul următor:

Apăsați pe ← pentru a confirma informația. Dacă nu conectați aparatul la rețea, acesta se stinge după un minut de la afișarea acestui mesaj. Așa că trebuie pus la încărcat cât mai repede.

2.8. SUPORTUL

Un suport escamotabil, situat în spatele aparatului Qualistar+, permite menținerea aparatului în poziție înclinată.

Figura 6 : Suportul și capacul de acces la baterie

2.9. ABREVIERI

Prefixele (unităților) din Sistemul Internațional (S.I.)

Prefix	Simbol	Factor de multiplicare
mili	m	10-3
kilo	k	10 ³
Mega	М	10 ⁶
Giga	G	10 ⁹
Tera	Т	10 ¹²
Peta	Р	10 ¹⁵
Exa	E	10 ¹⁸

Semnificația simbolurilor și abrevierilor folosite:

Simbol	Denumir
~	Componente alternative și continue.
~	Numai componentă alternativă.
=	Numai componentă continuă.
ŧ	Defazaj inductiv.
+	Defazaj capacitiv.
٥	Grad.
+	Modul Expert.
	Valoare absolută.
Σ	Valoarea sistemului complet (bifazat sau trifazat)
%	Procentaj.
%f	Valoare fundamentală de referință
%r	Valoarea totală de referință (numai pentru C.A 8333)
$\Phi_{\rm VA} \mathop{\rm sau} \Phi_{\rm UA}$	Defazajul tensiunii față de curent.
Α	Curent sau unitatea Ampere.
A-h	Armonica pentru curent.
Acf	Factor de vârf al curentului.
Ad	Curent eficace deformant.
Adc	Curent continuu.
Apk+	Valoarea de vârf maximă a curentului.
Apk-	Valoarea de vârf minimă a curentului.
Arms	Curent eficace real.
Athdf	Distorsiunea armonică totală a curentului, în %f.
Athdr	Distorsiunea armonică totală a curentului, în %r (numai pentru C.A 8333).
Aunb	Nivelul dezechilibrului invers al curenților.
AVG	Valoarea medie (media aritmetică).
CF	Factor de vârf (curent sau tensiune).
cos Φ	Cosinusul defazajului tensiunii față de curent (DPF – factor de putere fundamental sau factor de deplasare).
C.c.	Componentă continuă (curent sau tensiune).
DPF	Factor de deplasare (cos Φ).
FHL	Factor de pierdere armonică.
FK	Factor K.
Hz	Frecvența rețelei studiate.
L	Canal (Linie).
MAX	Valoare maximă.
MIN	Valoare minimă.
ms	Milisecundă.
PEAK sau PK	Valoarea de vârf maximă (+) sau minimă (-) a semnalului.
PF	Factor de putere.
PST	Scânteiere pe termen scurt.
RMS	Valoare eficace reală (curent sau tensiune).

Simbol	Denumir
t	Data relativă a cursorului temporal.
tg Φ	Tangenta defazajului tensiunii față de curent.
THD	Distorsiunea armonică totală (în %f sau, numai pentru C.A 8333, în %r).
U	Tensiune compusă.
U-h	Armonica tensiunii compuse.
Ucf	Factor de vârf al tensiunii compuse.
Ud	Tensiune compusă eficace deformantă.
Udc	Tensiune compusă continuă.
Upk+	Valoare de vârf maximă a tensiunii compuse.
Upk-	Valoare de vârf minimă a tensiunii compuse.
Urms	Tensiune eficace compusă reală.
Uthdf	Distorsiunea armonică totală a tensiunii compuse, în %f.
Uthdr	Distorsiunea armonică totală a tensiunii compuse, în %r (numai pentru C.A 8333).
Uunb	Nivelul dezechilibrului invers al tensiunilor com- puse.
V	Tensiune simplă sau unitatea volt.
V-h	Armonica tensiunii simple.
S	Putere aparentă.
S-h	Putere aparentă armonică.
D	Putere deformantă.
Dh	Energie deformantă.
Sh	Energie aparentă.
Q ₁	Putere reactivă (fundamentală).
N	Putere neactivă.
Q ₁ h	Energie reactivă (fundamentală).
Nh	Energie neactivă
Vcf	Factor de vârf al tensiunii simple.
Vd	Tensiune simplă eficace deformantă.
Vdc	Tensiune simplă continuă.
Vpk+	Valoare de vârf maximă a tensiunii simple.
Vpk-	Valoare de vârf minimă a tensiunii simple.
Vrms	Tensiune eficace simplă reală.
Vthdf	Distorsiunea armonică totală a tensiunii simple, în %f.
Vthdr	Distorsiunea armonică totală a tensiunii simple, în %r (numai pentru C.A 8333).
Vunb	Nivelul dezechilibrului invers al tensiunilor simple.
Р	Putere activă.
Ph	Energie activă.

3.1. PUNEREA ÎN FUNCȚIUNE

Pentru a aprinde aparatul, apăsați pe butonul . Se aprinde la apăsare, apoi se stinge, dacă blocul de alimentare de la rețea nu este conectat la aparat.

După verificarea software-ului, este afișat ecranul de întâmpinare, apoi ecranul informativ, care indică versiunea software-ului aparatului, precum și numărul său de garanție.

Figura 7 : Ecranul de întâmpinare la pornire

Figura 8 : Ecranul Forme de undă

3.2. CONFIGURAREA

Pentru a configura aparatul, procedați după cum urmează:

- Apăsați pe 🕬. Este afișat ecranul de configurare.
- Apăsați pe tastele ▲ sau ▼ pentru a selecta parametrul de modificat. Apăsați pe → pentru a intra în submeniul selectat.

Figura 9 : Ecranul Configurare

Utilizați apoi tastele de navigare (▲ sau ▼ și ◀ sau ►) și tasta ← pentru a confirma. Pentru mai multe detalii, vezi § 4.3 - 4.10.

Apoi este afișat ecranul Forme de undă.

La fiecare măsurătoare trebuie verificate sau adaptate următoarele puncte:

- Definirea parametrilor metodelor de calcul (vezi § 4.5).
- Selectarea sistemului de distribuție (monofazat până la trifazat cu 4 fire), precum și a metodei de conectare (2 wattmetre, standard) (vezi § 4.6).
- În funcție de tipul de senzor de curent conectat, programarea divizoarelor sau a gamei de curenți (vezi § 4.7).
- Programarea divizoarelor de tensiune (vezi § 4.7).
- Definirea nivelelor de declanşare (modul tranzitoriu) (vezi § 4.8) (numai pentru C.A 8333).
- Definirea valorilor de înregistrat (modul tendințelor) (vezi § 4.9).
- Definirea pragurilor de alarmă (vezi § 4.10) (numai pentru C.A 8333).

Pentru a reveni la ecranul Configurare pornind de la un submeniu, apăsați pe tasta 🍮.

3.3. MONTAREA CABLURILOR

Pentru a identifica toate cablurile și bornele de intrare, puteți să le marcați în funcție de codul de culori uzual pentru fază/nul, cu ajutorul spionilor colorați furnizați împreună cu aparatul.

Decuplați rețeaua și introduceți-o în cele două orificii prevăzute pentru aceasta, în apropiere de bornă (cea mare pentru borna de curent și cea mică pentru borna de tensiunen).

Figura 10 : Identificarea cablurilor și a bornelor

- Prindeți câte un inel de aceeași culoare la fiecare extremitate a cablului pe care îl conectați la bornă. Aveți la dispoziție douăsprezece seturi de spioni de culori diferite pentru a armoniza aparatul cu toate codurile de culori pentru fază/nul aflate în vigoare.
- Legați cablurile de măsurare la bornele aparatului:

Figura 11 : Bornele de conectare

Nu uitați să definiți, dacă este necesar, raportul de transformare al senzorilor de curent și al intrărilor de tensiune (vezi § 4.7).

Pentru a efectua o măsurătoare trebuie să programați cel puțin:

- metoda de calcul (vezi § 4.5),
- conectarea (vezi §4.6)
- și divizoarele senzorilor (vezi § 4.7).

Cablurile de măsurare trebuie legate la circuitul de măsurare conform schemelor următoare.

3.3.1. REŢEA MONOFAZATĂ

Figura 12 : Conexiune monofazată cu 2 fire

3.3.2. REȚEA BIFAZATĂ

Figura 13 : Conexiune bifazată cu 3 fire

3.3.3. REŢEA TRIFAZATĂ

Figura 14 : Conexiune trifazată cu 3 fire

രാ‱© (3ന്	
(J ¥	■Trifazat cu 4 fire

Figura 15 : Conexiune trifazată cu 4 fire

În cazul unei rețele trifazate cu 3 fire, nu sunteți obligat să conectați toate bornele de curent.

Pentru conexiunea trifazată cu 3 fire, indicați cei 2 senzori de curent care vor fi conectați: cei 3 senzori (3A) sau numai 2 (A1 și A2 sau A2 și A3 sau A3 și A1).

Pentru conexiunile trifazate cu 4 și 5 fire, indicați tensiunile care vor fi conectate: cele 3 tensiuni (3V) sau numai 2 (V1 și V2 sau V2 și V3 sau V3 și V1).

3.3.4. PROCEDURA DE CONECTARE

- Puneți aparatul în funcțiune,
- Configurați aparatul în funcție de măsurătorile care vor fi efectuate și de tipul rețelei respective (vezi § 4),
- Conectați cablurile și senzorii de curent la aparat,
- Conectați cablul nulului la nulul rețelei, atunci când aceasta este distribuită,
- Conectați cablul de la faza L1 la faza L1 a rețelei, precum și senzorul de curent corespunzător,
- Dacă este necesar, procedați la fel pentru fazele L2 și L3.

Observație: Prin respectarea acestei proceduri se limitează la maximum erorile de conectare și se pot evita pierderile de timp.

Procedura de deconectare:

- Procedați în ordinea inversă a conectării, terminând întotdeauna cu deconectarea nulului (atunci când rețeaua este distribuită).
- Deconectați cablurile aparatului și stingeți-l.

3.4. FUNCȚIILE APARATULUI

Orice ecran poate fi salvat (fotografia ecranului) printr-o apăsare pe tastă 🗐 timp de 3 secunde (vezi § 11).

În orice moment puteți apăsa pe tasta de ajutor ⑦. LEcranul de ajutor vă informează cu privire la funcțiile și simbolurile utilizate pentru modul de afișare în curs.

3.4.1. CAPTAREA FORMELOR DE UNDĂ (NUMAI PENTRU C.A 8333)

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta . Puteți afișa modul Tranzitoriu (vezi § 5).

3.4.2. AFIŞAREA ARMONICELOR

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta **In...**. Puteți afișa tensiunea simplă (vezi § 6.1), curentul (vezi § 6.2), puterea aparentă (vezi § 6.3) sau tensiunea compusă (vezi § 6.4).

3.4.3. MĂSURAREA FORMELOR DE UNDĂ

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta 🔍.

Puteți afișa măsurătorile valorii eficace reale (vezi § 7.1), distorsiunii armonice totale (vezi § 7.2), factorului de vârf (vezi § 7.3), valorile extreme ale tensiunii și ale curentului (vezi § 7.4), simultan mai multe valori (vezi § 7.5) sau diagrama Fresnel (vezi § 7.6).

3.4.4. DETECTAREA ALARMELOR (NUMAI PENTRU C.A 8333)

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta 🔼

Puteți configura modul de alarmă (vezi § 8.1), programa o campanie de alarme (vezi § 8.2), o puteți consulta (vezi § 8.4) sau șterge (vezi § 8.6).

3.4.5. ÎNREGISTRAREA

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta <u>5</u>. Puteți configura înregistrările (vezi § 9.2) și le puteți programa (vezi § 9.1). De asemenea, puteți consulta sau șterge înregistrări (vezi § 4.11).

3.4.6. MĂSURAREA ENERGIILOR

Aparatul fiind sub tensiune și conectat la rețea, apăsați pe tasta W. Puteți măsura energiile consumate (vezi § 10.1.3) sau generate (vezi § 10.1.4, § 10.2.2 sau § 10.3.2). Tasta Configurare 🕬 permite configurarea aparatului. Aceasta este necesară înainte de fiecare nou tip de măsurătoare. Configurarea rămâne în memorie, chiar și după stingerea aparatului.

4.1. MENIUL CONFIGURARE

Tastele de navigare (▲, ▼, ◀, ►) permit navigarea în meniul Configurare și parametrizarea aparatului. O valoare care poate fi modificată este încadrată de săgeți.

În cea mai mare parte a timpului, este necesară confirmarea (,,) pentru a se lua în considerare modificările efectuate de către utilizator.

Tasta de revenire (🇢) permite revenirea la meniul principal, pornind de la un submeniu.

Figura 16 : Ecranul Configurare

4.2. LIMBA DE AFIȘARE

Pentru a selecta limba de afișare, apăsați pe tasta galbenă a tastaturii, corespunzătoare pictogramei ecranului (figura 16).

Limba activă este indicată de pictograma pe fond galben.

4.3. DATA/ORA

În meniu 🕀 se definesc data și ora sistemului. Afișajul se prezintă după cum urmează:

See		14/01/01 20:33	
\odot	DATA / TIMP		
	<mark>Data / Timp</mark>	14/01/01 20:33	
	Format data	ZZ/LL/AA	
	Formattimp	12/24	

Figura 17 : Meniul Dată/Oră

Câmpul Dată/Oră fiind evidențiat cu galben, apăsați pe ↓. Pentru a modifica o valoare, apăsați pe ▲ sau pe ▼. Pentru a trece de la un câmp la altul, apăsați pe ◀ sau pe ▶. Pentru a confirma, apăsați pe ↓.

Procedați la fel pentru sistemul de datare (ZZ/LL/AA sau LL/ZZ/AA) și pentru cel orar (12/24 sau AM/PM). Efectul se vede imediat la afișarea datei.

Pentru a reveni la meniul Configurare, apăsați pe tasta 🍮.

Observație: Configurarea parametrilor privind data și ora nu este accesibilă, dacă aparatul este în curs de înregistrare, contorizare a energiei, cercetare a tranzienților (numai pentru C.A 8333) sau de alarmă (numai pentru C.A 8333).

4.4. AFIŞAJUL

4.4.1. LUMINOZITATEA

În meniu $m{\mathbb{O}}$ se definește luminozitatea afișajului. Afișajul se prezintă după cum urmează:

Figura 18 : Meniul Luminozitate

Utilizați tastele (◀, ►) pentru a regla luminozitatea. Pentru a reveni la meniul *Configurare*, apăsați pe tasta 🍮.

4.4.2. CULORILE

În meniu se definește culoarea curbelor de tensiune și curent. Apăsați pe tasta galbenă corespunzătoare pictogramei . Culorile disponibile sunt în număr de 15: verde, verde închis, galben, portocaliu, roz, roșu, maro, albastru, turcoaz, albastru închis, gri foarte deschis, gri deschis, gri, gri închis și negru.

Afișajul se prezintă după cum urmează:

Figura 19 : Meniul Culori

Utilizați tastele de navigare $(\blacktriangle, \triangledown, \blacktriangleleft, \blacktriangleright)$ pentru a modifica alocarea culorilor. Pentru a reveni la meniul *Configurare*, apăsați pe tasta \checkmark .

4.4.3. GESTIONAREA STINGERII ECRANULUI

În meniu 🕕 se definește gestionarea stingerii ecranului. Apăsați pe tasta galbenă corespunzătoare pictogramei 🕕.

Figura 20 : Meniul Gestionarea stingerii ecranului

Utilizați tastele de navigare (▲,▼) pentru a alege modul de stingere a ecranului: Automat sau Niciodată.

Modul Automat permite economisirea bateriei. Stingerea automată a ecranului de vizualizare se declanșează după cinci minute scurse fără vreo acțiune asupra tastelor, dacă este în curs o înregistrare, respectiv zece minute dacă nu este în curs nicio înregistrare. Butonul pornit/oprit clipește, pentru a arăta că aparatul funcționează în continuare. Reaprinderea ecranului se face prin apăsarea oricărei taste din cadrul tastaturii.

Pentru a reveni la meniul Configurare, apăsați pe tasta 🍮.

4.4.4. MODUL DE NOAPTE

Meniul C permite trecerea la modul de noapte. Apăsați pe tasta galbenă corespunzătoare pictogramei C.

Figura 21 : Meniul Mod de noapte

Utilizați tastele de navigare (▲,▼) pentru a activa sau dezactiva modul de noapte. Ecranul trece astfel pe video inversat, iar toate culorile sunt modificate.

4.5. METODELE DE CALCUL

În meniu 🗵 se definesc:

- Alegerea descompunerii sau nu a mărimilor neactive,
- Alegerea referinței pentru nivelele armonice ale fazelor,
- Alegerea coeficienților pentru calcularea factorului K.

4.5.1. ALEGEREA METODELOR DE CALCULARE A MĂRIMILOR NEACTIVE

Meniul VAR permite alegerea descompunerii sau nu a mărimilor neactive (puteri și energii).

Figura 22 : Meniul Metode de calculare a mărimilor reactive

Utilizați tastele de navigare (▲,▼) pentru a selecta descompunerea sau nu.

- Descompuneri: Puterea neactivă N este descompusă în putere reactivă (fundamentală) Q₁ și în putere deformantă D. Energia neactivă Nh este descompusă în Q₁h și Dh.
- Nedescompuse: Sunt afișate puterea neactivă N și energia neactivă Nh.

Apoi confirmați cu tasta 🛶 . Aparatul revine la meniul Configurare.

Observație: Modificarea este imposibilă, dacă aparatul este în curs de înregistrare, contorizare a energiei și/sau de cercetare a alarmei (numai pentru C.A 8333).

4.5.2. ALEGEREA COEFICIENȚILOR PENTRU CALCULAREA FACTORULUI K

În meniul FK se definesc coeficienții utilizați pentru calcularea factorului K.

Figura 23 : Meniul Alegerea coeficienților pentru calcularea factorului K

Utilizați tastele de navigare (▲, ▼, ◀, ►) pentru a fixa valoarea coeficienților q și e:

- q: constantă exponențială, care depinde de tipul de bobinaj și frecvență. Valoarea lui q poate varia între 1,5 și 1,7. Valoarea 1,7 este potrivită pentru transformatoarele la care secțiunile conductorilor sunt rotunde sau pătrate în toate bobinajele. Valoarea 1,5 este potrivită pentru cele la care înfășurările de joasă tensiune sunt în formă de panglică.
- e: raportul dintre pierderile datorate curenților Foucault (la frecvența fundamentală) și pierderile rezistive (ambele evaluate la temperatura de referință). Valoarea lui e poate varia între 0,05 și 0,1.

Valorile implicite (q = 1,7 și e = 0,10) sunt adecvate pentru majoritatea aplicațiilor.

Apoi confirmați cu tasta 🛶 . Aparatul revine la meniul Configurare.

Observație: Modificarea este imposibilă, dacă aparatul este în curs de înregistrare și/sau de cercetare a alarmei (numai pentru C.A 8333).

4.5.3. ALEGEREA REFERINTEI PENTRU NIVELE ARMONICE ALE FAZELOR (NUMAI PENTRU C.A 8333)

În meniul %f-%r se definește alegerea referinței pentru nivelele armonice ale fazelor.

Figura 24 : Meniul Alegerea referinței pentru nivelele armonice ale fazelor

Utilizați tastele de navigare (▲,▼) pentru a fixa valoarea de referință a nivelului armonicei:

- %f: valoarea de referință este cea a fundamentalei.
- %r: valoarea de referință este cea totală.

Apoi confirmați cu tasta 🛶 . Aparatul revine la meniul Configurare.

În cazul nivelelor armonice ale fazelor V-h, A-h și U-h, valoarea fundamentală și cea totală sunt valorile eficace. În cazul nivelelor armonice ale fazelor S-h, valoarea fundamentală și cea totală sunt valorile puterii aparente.

Observație: Modificarea este imposibilă, dacă aparatul este în curs de înregistrare și/sau de cercetare a alarmei.

4.6. CONECTAREA

În meniu 3ϕ se definește conectarea aparatului, în funcție de sistemul de distribuție.

Figura 25 : Meniul Conectare

Pot fi selectate mai multe scheme electrice: Utilizați tastele de navigare (▲,▼, ◄, ►) pentru a alege o conectare.

Fiecărui sistem de distribuție îi corespund unul sau mai multe tipuri de rețea.

Sistem de distribuție	Rețea	
Monofazat 2 fire (L1 și N)	Monofazat 2 fire, cu nul și fără împământare	
	Bifazat 3 fire, cu nul și fără împământare	L1 N L2
Bifazat 3 fire (L1, L2 și N)	Bifazat 3 fire, în stea deschisă, cu nul și fără împământare	N UN M L1 L2
	Bifazat 3 fire, în triunghi "high leg", cu nul și fără împă- mântare	
	Bifazat 3 fire, în triunghi "high leg" deschis, cu nul și fără împământare	L1 <u> <u> </u> </u>

Sistem de distribuție	Rețea	
	Trifazat 3 fire în stea	L3 UN ML1 L2
Trifazat 3 fire (L1, L2 și L3)	Trifazat 3 fire în triunghi	
Indicați cei 2 senzori de curent care vor fi conectați: cei 3 sen- zori (3A) sau numai 2 (A1 și A2	Trifazat 3 fire în triunghi deschis	
Metoda cu 3 wattmetre cu nul virtual (pentru conectările cu 3 senzori) sau metoda cu 2 wattmetre sau metoda cu 2 ele- mente sau metoda Aron (pentru conectările cu 2 senzori).	Trifazat 3 fire în triunghi deschis, cu legătură la pământ între faze	
Pentru conectările cu 2 senzori, al treilea senzor nu este nece- sar, dacă celelalte două sunt de același tip, din aceeași gamă și cu același raport. Dacă nu, tre- buie conectat al treilea senzor	Trifazat 3 fire în triunghi deschis, cu legătură la pământ pe fază	
curent.	Trifazat 3 fire în triunghi "high leg" deschis	
	Trifazat 3 fire în triunghi "high leg"	

Sistem de distribuție	Rețea	
Trifazat 4 fire (I 1 I 2 I 3 si N)	Trifazat 4 fire, cu nul și fără împământare	N N L1 L2
	Trifazat 4 fire, în triunghi "high leg" deschis, cu nul și fără împământare	$\begin{array}{c} L3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	Trifazat 4 fire, în triunghi "high leg", cu nul și fără împă- mântare	L3 $L1$ $L1$ N $=$ $L2$

Apoi confirmați cu tasta 🛶 . Aparatul revine la meniul *Configurare*.

Astfel, aparatul poate fi conectat în toate rețelele existente.

Observație: Selectarea unei noi conectări este imposibilă, dacă aparatul este în curs de înregistrare, contorizare a energiei, cercetare a tranzienților (numai pentru C.A 8333) sau de alarmă (numai pentru C.A 8333).

4.7. SENZORII ȘI DIVIZOARELE

Observație: Modificarea divizoarelor este imposibilă, dacă aparatul este în curs de înregistrare, contorizare a energiei, cercetare a tranzienților (numai pentru C.A 8333) sau de alarmă (numai pentru C.A 8333).

4.7.1. SENZORII ȘI DIVIZOARELE DE CURENT

Pe primul ecran A se definesc senzorii și divizoarele de curent. Sunt afișate automat modelele de senzori de curent detectate de către aparat. Dacă este detectat un senzor, dar nu este gestionat, atunci este afișat un mesaj de eroare.

Figura 26 : Ecranul Senzori și divizoare de curent din meniul Senzori și divizoare

În cazul unui montaj trifazat cu 3 fire, în care sunt conectați numai doi din cei trei senzori de curent necesari, dacă acești doi senzori sunt de același tip și au același divizor, atunci aparatul simulează al treilea senzor, preluând aceleași caracteristici ca pentru ceilalți doi. Al treilea senzor va apărea pe listă ca simulat, iar dacă nu, ca nesimulabil. În cazul unui montaj trifazat cu 4 fire, senzorul de curent prin nul este simulat, dacă cei 3 senzori de fază sunt identici.

Diverșii senzori de curent sunt:

~	Clește MN93 : 200 A.
	Clește MN93A : 100 A sau 5 A.
	Clește C193 : 1000 A.
O H	Clește J93 : 3500 A
0	Amp <i>FLEX</i> ® A193 : 100, 6 500 sau 10 000 A.
\cup	Mini <i>FLEX</i> MA193 : 100, 6 500 sau 10 000 A.
	Clește PAC93 : 1000 A.
	Clește E3N : 100 A (sensibilitate 10 mV/A).
	Cleşte E3N : 10 A (sensibilitate 100 mV/A).
	Adaptor trifazat: 5 A sau Essailec®.

Dacă este utilizat un senzor *Clește MN*93A etalonat la 5 A, un *Adaptor*, un Amp*FLEX*®, un Mini*FLEX* sau un *Clește E3N*, atunci reglarea divizorului, gamei sau a sensibilității este propusă automat.

Utilizați tastele de navigare (▲, ▼, ◀, ►) pentru a le defini, apoi confirmați cu tasta ↔.

Curentul primar nu poate fi mai mic decât cel secundar.

4.7.2. DIVIZOARELE DE TENSIUNE

Pe al doilea ecran, V sau U se definesc divizoarele de tensiune.

Programarea divizoarelor poate fi diferită sau comună pentru toate canalele sau pentru anumite canale. Divizoarele de programat sunt cele de tensiune simplă, în prezența nulului și cele de tensiune compusă, în absența sa.

Pentru a modifica divizoarele, apăsați pe tasta
.

9 G			06.	(12/13	10:38	
(JE F	RAPOART	E DE TRA	NSFORM	ARE	TENSI	JNE
	Stabilire	raport trai	nsformare	. ▲ 3U	1/1	
				•		
U	Δ					-

Figura 27 : Ecranul Divizoare de tensiune, din meniul Senzori și divizoare în cazul unui montaj fără nul

Figura 28 : Ecranul Divizoare de tensiune, din meniul Senzori și divizoare în cazul unui montaj cu nul

Utilizați tastele de navigare (▲, ▼) pentru a alege configurația divizoarelor. ■ 3U 1/1 sau 3V 1/1: toate canalele au acelasi divizor unitar.

- 3U sau 3V: toate canalele au același divizor de programat.
 - Apăsați pe tasta
 , apoi utilizați tastele
 ,
 pentru a evidenția divizorul cu galben.

1 2 3 0001.0k 1 1 000.0

Apăsați pe tasta
→, apoi utilizați tastele
▲, ♥, ◀ și ▶ pentru a modifica valoarea divizorului. Tensiunea primară este exprimată în kV, iar cea secundară în V.

U1+U2+U3 sau V1+V2+V3: fiecare canal are un divizor diferit de programat.
 Procedați ca și cum ar fi un singur divizor, dar repetați operațiunea de mai multe ori.

Confirmați cu tasta 🖵 . Pentru a reveni la meniul Configurare, apăsați pe tasta 🍮.

Observație: tensiunile primare și secundare pot fi configurate fiecare cu un factor de multiplicare de $1/\sqrt{3}$.

4.8. MODUL TRANZITORIU (NUMAI PENTRU C.A 8333)

Modul mermite configurarea pragurilor de tensiune și a pragurilor de curent pentru modul tranzitoriu.

4.8.1. PRAGURI DE TENSIUNE ÎN MODUL TRANZITORIU

Primul ecran , afișat prin apăsarea pe pictograma V (sau U pentru montajele fără nul), permite configurarea pragurilor de tensiune.

Programarea pragurilor poate fi diferită sau comună pentru toate canalele sau pentru anumite canale.

Figura 29 : Ecranul Praguri de tensiune din meniul Mod tranzitoriu

Pentru a modifica pragurile de tensiune, apăsați pe tasta 🛶 .

Utilizați tastele de navigare (▲,▼) pentru a alege configurația pragurilor.

- 3V sau 3U: toate canalele au același prag.
 - Apăsați pe tasta
 , apoi utilizați tastele ▲, ▼ pentru a evidenția cu galben valoarea pragului.

■ Apăsați pe tasta
, apoi utilizați tastele
,
,
,
,
,
,
,
pentru a modifica valoarea pragului. Unitatea poate fi V sau kV.

1 2 8 ⊲005∨ ►

V1+V2+V3 sau U1+U2+U3: fiecare canal are un prag diferit de programat.
 Procedați ca și cum ar fi un singur prag, dar repetați operațiunea de mai multe ori.

Confirmați cu tasta u . Pentru a reveni la meniul Configurare, apăsați pe tasta 🍮.

Observație: Modificarea pragurilor în modul tranzitoriu este imposibilă, dacă aparatul este în căutarea tranzienților.

4.8.2. PRAGURI DE CURENT ÎN MODUL TRANZITORIU

Al doilea ecran , afișat prin apăsarea pe pictograma **A**, permite configurarea pragurilor de curent (independent de senzorii de curent detectați de aparat).

Programarea pragurilor poate fi diferită sau comună pentru toate canalele sau pentru anumite canale.

9 6	06/0	2/14 14:24	
	ITRU CURENT		
	Stabilire prag	3A	
000	0005A		
	V A		

Figura 30 : Ecranul Praguri de curent din meniul Mod tranzitoriu

Pentru a modifica pragurile de curent, apăsați pe tasta 🛶 .

Utilizați tastele de navigare (▲, ▼) pentru a alege configurația pragurilor.

- 3A: toți senzorii de curent au același prag.
 - Apăsați pe tasta
 , apoi utilizați tastele ▲, ▼ pentru a evidenția cu galben valoarea pragului.

Apăsați pe tasta →, apoi utilizați tastele ▲, ▼, ◀ și ▶ pentru a modifica valoarea pragului. Unitatea poate fi A, kA sau mA.

A1+A2+A3: fiecare senzor de curent are un prag diferit de programat.
 Procedaţi ca şi cum ar fi un singur prag, dar repetaţi operaţiunea de mai multe ori.

Confirmați cu tasta 🖵 . Pentru a reveni la meniul *Configurare*, apăsați pe tasta 🍮.

Observație: Modificarea pragurilor în modul tranzitoriu este imposibilă, dacă aparatul este în căutarea tranzienților.

4.9. MODUL TENDINȚĂ

Aparatul dispune de o funcție de înregistrare (tasta 🔄, vezi § 9) care permite înregistrarea valorilor măsurate și a celor calculate (Urms, Vrms, Arms etc.).

Apăsați pe tasta modului Configurare 🕬 și selectați submeniul Modul tendință 🚧.

9 G				06/02/14	14:24	
ETL N	/OD TE					
♦ Urms	≎Ucf	≎Uthdf	≎Uthdr			
♦Vrms	♦ Vcf	◇ Vthdf	◇ Vthdr			
♦ Arms	○ Acf	◇ Athdf	◇ Athdr			
1 ° P	୍ୟା	٥D	05			
♦PF	ocos∳	otan∳				
OPST	o FHI	0 FK	o Vunh	o Aunh	♦ H ₇	
1	€TTIL	• m	• • • • • •	· / · · · · · · · · · · · · · · · · · ·	• 112	
1 1	/2		1/4			
B	ि	L L	4 1	÷÷,		0

Figura 31 : Primul ecran din Modul tendință

9 G				06/12/13 10:42 💷
(‡①,)	NOD TE	ENDINTA		
<mark>≎U-h</mark>	00	\rightarrow	00	o Numai impare
¢V-h	00	\rightarrow	00	o Numai impare
◇A-h	00	\rightarrow	00	o Numai impare
≎S-h	00	\rightarrow	00	o Numai impare
	2/2		1.04	
<u></u>	E E		4	1 .

Figura 32 : Al doilea ecran din Modul tendință

Există 4 configurații programabile posibile 10, 12, 13, i 14, independente unele de altele. Pentru a trece de la una la alta, utilizați tastele 1-, sau 1-, sau 1-,

Pentru a selecta parametrul de înregistrat, deplasați cursorul galben cu ajutorul tastelor $\blacktriangle, \bigtriangledown, \triangleleft, \triangleleft, \Downarrow, \triangleleft, \downarrow$ și \blacktriangleright pe parametrul respectiv, apoi confirmați cu tasta ι . Parametrul selectat este indicat de un punct roșu. Frecvența (Hz) este întotdeauna selectată (punctul negru).

Observație: Afișarea unei mărimi cu roșu înseamnă că aceasta este incompatibilă cu configurația aleasă (conectarea selectată, senzorii conectați, divizoarele programate, referința nivelelor armonice ale fazelor, descompunerea mărimilor neactive). De ex., dacă nu este conectat niciun senzor de curent, atunci toate mărimile de curent apar cu roșu.

Pentru a selecta toți parametrii dintr-o pagină, apăsați pe tasta ●. Pentru a deselecta toți parametrii dintr-o pagină, apăsați pe tasta ○. Pentru a modifica pagina de configurare, apăsați pe tasta ⊡ sau ⊡ .

Valorile înregistrabile sunt:

Unitate	Denumire
Urms	Tensiune eficace compusă.
Ucf	Factor de vârf al tensiunii compuse.
Uthdf	Distorsiunea armonică a tensiunii compuse, cu valoarea eficace a fundamentalei de referință.
Uthdr	Distorsiunea armonică a tensiunii compuse, cu valoarea eficace totală, fără c.c. de referință (numai pentru C.A 8333).
Vrms	Tensiune eficace simplă.
Vcf	Factor de vârf al tensiunii simple.
Vthdf	Distorsiunea armonică a tensiunii simple, cu valoarea eficace a fundamentalei de referință.
Vthdr	Distorsiunea armonică a tensiunii simple, cu valoarea eficace totală, fără c.c. de referință (numai pentru C.A 8333).
Arms	Curent eficace.
Acf	Factor de vârf al curentului.
Athdf	Distorsiunea armonică a curentului, cu valoarea eficace a fundamentalei de referință.
Athdr	Distorsiunea armonică curentului, cu valoarea eficace totală, fără c.c. de referință (numai pentru C.A 8333).
P	Putere activă.
Q1	Putere reactivă (fundamentală).
N	Putere neactivă.
D	Putere deformantă.
S	Putere aparentă.
PF	Factor de putere.
$\cos\Phi$	Cosinusul defazajului tensiunii față de curent (factor de deplasare sau factor de putere fundamental – DPF).
tg Φ	Tangenta defazajului tensiunii față de curent.
PST	Scânteiere pe termen scurt.
FHL	Factor de pierdere armonică
FK	Factor K.
Vunb sau Llunb	Nivelul dezechilibrului invers al tensiunii simple (montaj cu nul).
Aunh	Nivelul dezechilibrului invers al curentului
Hz	Frecventa retelei
U-h	Armonice de tensiune compusă
	Armonice de tensiune simplă
	Armonice de curent
	Armonice de outere anarentă
	Annonioo do patoro aparona.

Cele patru rânduri de pe ultimul ecran se referă la înregistrarea armonicelor mărimilor U, V, A și S. Pentru fiecare dintre aceste mărimi se pot selecta rangurile armonicelor de înregistrat (între 0 și 50) și, eventual în acest interval, numai armonicele impare.

Observație: Nivelele armonicelor de rangul 01 sunt afișate numai dacă se referă la valori exprimate în %r (numai pentru C.A 8333).

Pentru a modifica un rang al armonicii, selectați mai întâi parametrul de înregistrat (indicat de un punct roșu), deplasați cursorul galben cu ajutorul tastelor $\blacktriangle, \bigtriangledown, \triangleleft, \triangleleft$ și \blacktriangleright pe cifra respectivă, apoi confirmați cu tasta \dashv . Modificați valoarea cu ajutorul tastelor \blacktriangle și \triangledown , apoi confirmați cu tasta \dashv .

9 G				06/12/13 10:46	
LO, MOD TENDINTA					
♦U-h	00	\rightarrow	00	o Numai impare	
oV-h	00	\rightarrow	00	o Numai impare	
♦ A-h	00	\rightarrow	▲ 03	o Numai impare	
oS-h	0.0	\rightarrow	•	o Numai impare	
				o Hamai imparo	
	2/2		1/4		
Ŀ	E.		<u> </u>	ikti, ●	0

Figura 33 : Al doilea ecran din Modul tendință în curs de modificare

Observație: Dacă este în curs o înregistrare, atunci configurația asociată nu este modificabilă, iar valorile selectate sunt indicate de un punct negru.

Pentru a reveni la meniul Configurare, apăsați pe 🍮.

4.10. MODUL DE ALARMĂ (NUMAI PENTRU C.A 8333)

Ecranul 🗘 definește alarmele care vor fi utilizate de funcția Modul de alarmă (vezi § 7).

Puteți defini o alarmă pentru fiecare dintre parametrii următori:

Hz, Urms, Vrms, Arms, Ucf, Vcf, Acf, Uthdf, Vthdf, Athdf, Uthdr, Vthdr, Athdr, |P|, |Q₁| sau N, D, S, |PF|, |cos Φ|, |tan Φ|, PST, FHL, FK, Vunb (sau Uunb pentru o sursă trifazată fără nul), Aunb, U-h, V-h, A-h și |S-h| (vezi tabelul abrevierilor din § 2.9).

Există 10 alarme programabile.

Pentru a activa o alarmă, deplasați cursorul galben pe numărul acesteia, cu ajutorul tastelor ▲,▼ apoi confirmați cu tasta ↔ . Alarma activă este indicată cu un punct roșu. O alarmă neprogramată ("? ") nu poate fi activată.

Pentru a programa alarma, deplasați cursorul cu ajutorul tastelor ▲, ♥, ◀ și ▶ apoi confirmați cu tasta u . Modificați valoarea, apoi confirmați din nou.

Figura 34 : Meniul Mod de alarmă

Pentru a defini o alarmă, programați valorile următoare:

- Tipul alarmei.
- Rangul armonicei (între 0 și 50), numai pentru |S-h|, A-h, U-h și V-h.
- Ţinta alarmei:
 - 3L: 3 faze urmărite individual,
 - N: urmărire pe nul,
 - 4L: 3 faze și nulul urmărite individual,
 - Σ: urmărirea valorii sistemului complet.
- Sensul alarmei (> sau <) numai pentru Hz, Urms, Vrms, Arms.
- Pragul de declanşare a alarmei (valoarea şi unitatea pentru Urms, Vrms, Arms, |P|, |Q₁| sau N, D şi S).
- Durata minimă de depăşire a pragului pentru confirmarea alarmei: în minute sau secunde sau numai pentru Vrms, Urms şi Arms (fără nul) – în sutimi de secundă.
- Valoarea histerezisului: 1%, 2%, 5% sau 10% (vezi § 16.3).

Pentru a trece de la o pagină la alta, apăsați pe tasta 🖾 sau 🖾 .

Fiecare depășire de alarmă va fi notată în cadrul unei campanii de alarme.

Observații: Afișarea cu roșu a unei linii de alarmă înseamnă că mărimea și/sau ținta programată este incompatibilă cu configurația aleasă: (conectarea selectată, senzorii conectați, divizoarele programate, metodele de calcul alese).

Alarmele pe nivelul armonicii de rangul 01 nu au loc decât pentru valorile exprimate în %r.

Dacă este în curs o cercetare a alarmei, atunci alarmele activate nu pot fi modificate și sunt indicate cu un punct negru. Totuși, pot fi activate alarme noi (încă neprogramate sau neactivate).

Pentru a reveni la meniul Configurare, apăsați pe 🍮.

4.11. ȘTERGEREA DATELOR

Meniul 🔤 permite ștergerea parțială sau totală a datelor înregistrate de aparat.

Figura 35 : Meniul Ștergerea datelor

Pentru a selecta o dată de șters, deplasați cursorul galben pe ea cu ajutorul tastelor ▲, ▼, ◀ și ▶ apoi confirmați cu tasta ←. Data de șters este indicată de un punct roșu.

Pentru a selecta toate datele, apăsați pe tasta •. Pentru a deselecta toate datele, apăsați pe tasta ^O.

Pentru a efectua ștergerea, apăsați pe tasta 📟, apoi confirmați cu tasta 斗.

Pentru a reveni la meniul Configurare, apăsați pe 🍮.

Observație: Ștergerile posibile depind de înregistrările în curs (înregistrare, contorizarea energiei, cercetarea tranzienților (numai pentru C.A 8333) și a alarmei (numai pentru C.A 8333)).

4.12. INFORMAŢII

Ecranul 🛈 afişează informațiile privind aparatul.

Figura 36 : Meniul Informații

Pentru a reveni la meniul Configurare, apăsați pe 🍮.

5. MODUL TRANZITORIU (NUMAI PENTRU C.A 8333)

Modul me ppermite înregistrarea tranzienților, consultarea listei de cercetări înregistrate și a listei de tranzienți pe care le conțin sau ștergerea acestora. Puteți înregistra până la 7 cercetări și 51 tranzienți.

La apelarea modului tranzitoriu:

- Dacă nu a fost realizată nicio înregistrare, atunci este afișat ecranul Programarea unei cercetări.
- Dacă au fost înregistrați tranzienți, atunci este afișat ecranul *Lista cercetărilor tranzienților*.

Figura 37 : Ecranul Programarea unei cercetări în modul tranzitoriu

5.1. PROGRAMAREA ȘI LANSAREA UNEI CERCETĂRI

Pentru a programa cercetarea tranzienților, introduceți data și ora inițiale, data și ora finale, numărul de tranzienți de cercetat și apoi denumirea cercetării.

Pentru a modifica o dată, deplasați cursorul galben pe ea cu ajutorul tastelor ▲ și ▼ apoi confirmați cu tasta ←. Modificați valoarea cu ajutorul tastelor ▲, ▼, ◀ și ▶, apoi confirmați din nou.

Denumirea poate avea maximum 8 caractere. Mai multe cercetări pot avea aceeași denumire. Caracterele alfanumerice disponibile sunt majusculele de la A la Z și cifrele de la 0 la 9. Ultimele 5 denumiri atribuite (în modurile tranzitoriu, tendință și alarmă) sunt păstrate în memorie. Deci, la introducerea unei denumiri, aceasta poate fi completată automat.

Observații: Data și ora inițiale trebuie să fie ulterioare datei și orei actuale.

Data și ora finale trebuie să fie ulterioare datei și orei inițiale.

Odată terminată programarea, lansați cercetarea apăsând pe tasta . Pictograma barei de stare clipește, indicând că a fost lansată cercetarea. Tasta binlocuiește tasta ; permite oprirea cercetării, înainte de încheierea normală a acesteia.

Este afișat mesajul *Cercetare în așteptare*, până când se ajunge la ora de începere. Apoi este înlocuit cu mesajul *Cercetare în curs*. Când se ajunge la ora finală, revine ecranul *Programarea unei cercetări* cu tasta **•**. Deci este posibilă programarea unei noi cercetări.

În timpul unei cercetări a tranzienților, numai câmpul datei finale poate fi modificat. Este evidențiat automat cu galben.

5.2. VIZUALIZAREA UNUI TRANZIENT

Pentru a vizualiza tranzienții înregistrați, apăsați pe tasta 🌌. Este afișat ecranul Lista cercetărilor tranzienților.

Figura 38 : Ecranul Lista cercetărilor tranzienților

Dacă data finală este cu roșu, aceasta se întâmplă pentru că nu corespunde datei finale programate inițial:

- fie din cauza unei probleme legate de alimentare (baterie slabă sau deconectarea aparatului alimentat numai de la rețea),
- fie pentru că numărul de tranzienți a fost atins, punând astfel capăt cercetării.

Pentru a selecta o cercetare a tranzienților, deplasați cursorul pe ea cu ajutorul tastelor ▲ și ▼. Cercetarea selectată este marcată cu litere îngroșate. Apoi confirmați cu tasta → . Astfel aparatul afișează tranzienții sub formă de listă.

Figura 39 : Ecranul Lista tranzienților, în cazul unui montaj trifazat cu 4 fire

Pentru a selecta un tranzient, deplasați cursorul pe el cu ajutorul tastelor ▲ și ▼. Câmpul selectat este marcat cu litere îngroșate. Apoi confirmați cu tasta → . Aparatul afișează tranzienții sub formă de curbe.

Indicarea numărului atribuit curbei afișate; aici discul de identificare 1 este plin, pentru a arăta că V1 este canalul care a declanșat captarea tranzientului.

Selectarea curbelor de afișat.

Valoarea instantanee a semnalelor, în funcție de poziția cursorului. Pentru a deplasa cursorul, utilizați tastele ◀ sau ►.

Figura 40 : Exemplu de afișare a tranzienților sub formă de curbe, la o conexiune trifazată cu 4 fire

Observație: Filtrul de selectare a curbelor de afișat este dinamic și depinde de conexiunea aleasă. De ex., va propune (3U, 3A) pentru un montaj trifazat cu 3 fire.

Pentru a reveni la ecranul Lista tranzienților, apăsați pe 🍮.

5.3. ANULAREA UNEI CERCETĂRI A TRANZIENȚILOR

În timp ce vizualizați lista cu cercetările tranzienților (vezi figura 39), selectați cercetarea de șters. Pentru aceasta, deplasați cursorul pe ea cu ajutorul tastelor 🔺 și 🔻. Cercetarea selectată este marcată cu litere îngroșate.

Apăsați apoi pe tasta 📟. Apăsați pe tasta ← pentru a confirma sau pe ᅩ pentru a anula.

Observație: Anularea unei cercetări a tranzientului este posibilă numai dacă aceasta nu este în curs.

5.4. ANULAREA UNUI TRANZIENT

În timp ce vizualizați lista tranzienților din cadrul unei cercetări (vezi figura 40), selectați tranzientul de șters. Pentru aceasta, deplasați cursorul pe el cu ajutorul tastelor **A** și **V**. Tranzientul selectat este marcat cu litere îngroșate.

Apăsați apoi pe tasta 📟. Apăsați pe tasta ← pentru a confirma sau pe ᅩ pentru a anula.

Pentru a reveni la ecranul Lista cercetărilor, apăsați pe tasta 🍮.

6. ARMONICE

Modul *Armonice* afișează reprezentarea nivelelor armonicelor tensiunii, curentului și puterii aparente în funcție de rang. Permite determinarea curenților armonici produși de sarcinile neliniare, precum și analiza problemelor create de aceste armonice, în funcție de rang (încălzirea nulului, conductorilor, motoarelor etc.).

Analiza puterii aparente a armonicelor (vezi § 6.3).

Analiza armonicelor curentului (vezi § 6.2).

Analiza armonicelor tensiunii simple (vezi § 6.1).

Figura 41 : Ecranul modului Armonice

Selectarea filtrelor și modului expert (vezi § 6.5). Utilizați tastele ▲ sau ▼ ppentru a selecta afișarea.

Numai pentru C.A 8333.

Analiza armonicelor tensiunii compuse (vezi § 6.4).

6.1. TENSIUNEA SIMPLĂ

Submeniul V afișează armonicele tensiunii simple numai pentru sursele care au un nul.

Alegerea curbelor de afișat depinde de tipul de conectare (vezi § 4.6) :

- Monofazat 2 fire: nu există opțiuni (L1)
- Bifazat 3 fire: 2L, L1, L2

monicelor. Utilizați tastele < sau >

pentru a deplasa cursorul.

■ Trifazat 4 fire: 3L, L1, L2, L3, -,+ (numai pentru C.A 8333)

Captările ecranului prezentate în exemplu sunt cele obținute pentru conexiunea trifazată cu 4 fire.

6.1.1. ECRANUL DE AFIȘARE A ARMONICELOR TENSIUNII SIMPLE ÎN 3L

Aceste informații se referă la armonica indicată de cursor.

Afişarea celor 3 faze 3L din L1, L2, L3, N sau (numai pentru C.A 8333) din modul expert (numai conectare trifazată - vezi § 6.5). Pentru a selecta afişarea, apăsați pe tastele ▲ sau ▼.

Axa orizontală indică rangurile armonicelor. Nivelul armonicelor este dat ca procent din fundamentală sau (numai pentru C.A 8333) din valoarea eficace totală.

Rangul c.c.: componenta continuă. Rangul (de la 1 la 25): rangul armonicelor. Atunci când cursorul depășește rangul 25, apare plaja 26-50.

Figura 42 : Exemplu de afișare a armonicelor tensiunii simple în 3L

6.1.2. ECRANUL DE AFIȘARE A ARMONICELOR TENSIUNII SIMPLE ÎN L1

Aceste informații se referă la armonica indicată de cursor.

V-h03: numărul armonicii. %: nivelul armonicii, cu valoarea de referință eficace a fundamentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace totală (%r).

V: tensiunea eficace a armonicii considerate.

-143°: defazajul în raport cu fundamentala (rangul 1).

max – min: indicatori de maxim și minim ai nivelului armonicii considerate. Sunt reinițializați la fiecare schimbare a numărului armonicii sau prin apăsare pe tasta *⊢* .

THD : distorsiunea armonică totală. **Vd:** tensiunea eficace deformantă.

Cursor de selectare a rangului armonicelor. Utilizați tastele ◀ sau ► pentru a deplasa cursorul. Afişarea celor 3 faze 3L din L1, L2, L3 sau (numai pentru C.A 8333) din modul expert (numai conectare trifazată - vezi § 6.5). Pentru a selecta afişarea, apăsați pe tastele ▲ sau ▼.

Axa orizontală indică rangurile armonicelor. Nivelul armonicelor este dat ca procent din fundamentală sau (numai pentru C.A 8333) din valoarea eficace totală.

Rangul c.c.: componenta continuă. Rangul (de la 1 la 25): rangul armonicelor. Atunci când cursorul depășește rangul 25, apare plaja 26-50.

Indicator de prezență a armonicelor nenule de rang mai mare decât 25.

Figura 43 : Exemplu de afișare a armonicelor tensiunii simple în L1

Observație: Filtrele L2 și L3 afișează armonicele tensiunii simple pe fazele 2, respectiv 3. Ecranul este identic cu cel afișat pentru filtrul L1.

6.2. CURENT

Submeniul A afișează armonicele curentului.

6.2.1. ECRANUL DE AFIȘARE A ARMONICELOR CURENTULUI ÎN 3L

Figura 44 : Exemplu de afișare a armonicelor curentului în 3L

6.2.2. ECRANUL DE AFIȘARE A ARMONICELOR CURENTULUI ÎN L1

Aceste informații se referă la armonica indicată de cursor.

A-h05: numărul armonicii. %: nivelul armonicii, cu valoarea de referință eficace a fundamentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace totală (%r).

A: curentul eficace al armonicii considerate.

+178°: defazajul în raport cu fundamentala (rangul 1).

max-min: indicatori de maxim și minim ai nivelului armonicii considerate. Sunt reinițializați la fiecare schimbare a numărului armonicii sau prin apăsare pe tasta *⊢* .

THD : distorsiunea armonică totală. **Ad:** Curent eficace deformant.

Cursor de selectare a rangului armonicelor. Utilizați tastele ◀ sau ► pentru a deplasa cursorul.

Afişarea celor 3 faze 3L din L1, L2, L3 sau (numai pentru C.A 8333) din modul expert (numai conectare trifazată - vezi § 6.5). Pentru a selecta afişarea, apăsați pe tastele ▲ sau ▼.

Axa orizontală indică rangurile armonicelor. Nivelul armonicelor este dat ca procent din fundamentală sau (numai pentru C.A 8333) din valoarea eficace totală.

Rangul c.c.: componenta continuă. Rangul (de la 1 la 25): rangul armonicelor. Atunci când cursorul depășește rangul 25, apare plaja 26-50.

Figura 45 : Exemplu de afișare a armonicelor curentului în L1

Observații: Filtrele L2 și L3 afișează armonicele curentului pe fazele 2, respectiv 3. Ecranul este identic cu cel afișat pentru filtrul L1.

6.3. PUTERE APARENTĂ

Submeniul S afișează puterea aparentă a fiecărei armonice, pentru toate conectările, cu excepția celei trifazate cu 3 fire.

Axa orizontală indică rangurile armonicelor. Barele histogramei de deasupra axei orizontale corespund unei puteri armonice consumate, iar cele de dedesubt corespund unei puteri armonice generate.

6.3.1. ECRANUL DE AFIȘARE A ARMONICELOR PUTERII APARENTE ÎN 3L

Aceste informații se referă la armonica indicată de cursor.

S-h03: numărul armonicii. %: nivelul armonicii, cu puterea aparentă a fundamentalei de referință (%f) sau (numai pentru C.A 8333) cu puterea aparentă (totală) de referință (%r).

+006°: defazajul armonicii tensiunii în raport cu armonica curentului, pentru rangul considerat.

Indicator de generare a energiei pentru această armonică.
 Indicator de consum al energiei pentru această armonică.

Cursor de selectare a rangului armonicelor. Pentru a deplasa cursorul, utilizați tastele ◀ sau ►.

Afișarea celor 3 faze 3L, din L1, L2 sau L3. Pentru a selecta afișarea, apăsați pe tastele ▲ sau ▼.

Axa orizontală indică rangurile armonicelor. Nivelul armonicelor este dat în procente din puterea aparentă a fundamentalei sau (numai pentru C.A 8333) din puterea aparentă (totală). **Rangul c.c.:** componenta continuă. **Rangul (de la 1 la 25):** rangul armonicelor. Atunci când cursorul depășește rangul 25, apare plaja 26-50.

Figura 46 : Exemplu de afișare a puterii aparente a armonicelor în 3L
6.3.2. ECRANUL DE AFIȘARE A PUTERII APARENTE A ARMONICELOR ÎN L1

Aceste informații se referă la armonica indicată de cursor.

S-h03: numărul armonicii.

%: nivelul armonicii, cu puterea aparentă a fundamentalei de referință (%f) sau (numai pentru C.A 8333) cu puterea aparentă (totală) de referință (%r).

+045°: defazajul armonicii tensiunii în raport cu armonica curentului, pentru rangul considerat.

Cursor de selectare a rangului armonicelor. Utilizați tastele ◀ sau ▶ pentru a deplasa cursorul.

Figura 47 : Exemplu de afișare a puterii aparente a armonicelor în L1

Afișarea celor 3 faze 3L, din L1, L2 sau L3. Pentru a selecta afișarea, apăsați pe tastele ▲ sau ▼.

Observație: Filtrele L2 și L3 afișează puterea aparentă a armonicelor pe fazele 2, respectiv 3. Ecranul este identic cu cel afișat pentru filtrul L1.

6.4. TENSIUNEA COMPUSĂ

Submeniul **U** este disponibil pentru toate conectările, în afară de cele monofazate cu 2 fire. Acest submeniu afișează armonicele tensiunii compuse.

6.4.1. ECRANUL DE AFIȘARE A ARMONICELOR TENSIUNII COMPUSE ÎN 3L

Figura 48 : Exemplu de afișare a armonicelor tensiunii compuse în 3L

6.4.2. ECRANUL DE AFIȘARE A ARMONICELOR TENSIUNII COMPUSE ÎN L1

Aceste informații se referă la armonica indicată de cursor.

Uh 03: numărul armonicii. **%:** nivelul armonicii, cu valoarea de referință eficace a fundamentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace totală (%r).

V: tensiunea eficace a armonicii considerate.

+000°: defazajul în raport cu fundamentala (rangul 1).

max-min: indicatori de maxim și minim ai nivelului armonicii sau prin apăsare pe tasta *→* .

THD: distorsiunea armonică totală. **Ud:** tensiunea compusă eficace deformantă.

Cursor de selectare a rangului armonicelor. Utilizați tastele ◀ sau ► pentru a deplasa cursorul.

Afișarea celor 3 faze 3L, din L1, L2 sau L3. Pentru a selecta afișarea, apăsați pe tastele ▲ sau ▼.

Axa orizontală indică rangurile armonicelor. Nivelul armonicelor este dat ca procent din fundamentală sau (numai pentru C.A 8333) din valoarea eficace totală.

Rangul c.c.: componenta continuă. Rangul (de la 1 la 25): rangul armonicelor. Atunci când cursorul depășește rangul 25, apare plaja 26-50.

Observație: Filtrele L2 și L3 afișează armonicele tensiunii compuse pe fazele 2, respectiv 3. Ecranul este identic cu cel afișat pentru filtrul L1.

6.5. MODUL EXPERT (NUMAI PENTRU C.A 8333)

Modul expert ste disponibil numai pentru conexiunea trifazată. Permite afișarea influenței armonicelor asupra încălzirii nulului sau asupra mașinilor rotative. Pentru a afișa modul expert, apăsați pe tastele ▲ sau ▼ din cadrul tastaturii. Selecția este evidențiată cu galben, iar ecranul afișează simultan modul expert.

Pornind de la acest ecran, sunt disponibile două submeniuri:

- V pentru montajele trifazate cu nul sau U pentru cele fără nul.
- A pentru modul expert al curentului.

Notă: Descompunerea în secvențe, efectuată aici, nu este valabilă decât în cazul unei sarcini echilibrate.

6.5.1. ECRANUL DE AFIȘARE AL MODULUI EXPERT PENTRU TENSIUNEA SIMPLĂ

Pentru montajele trifazate cu nul, submeniul V afișează influența armonicelor tensiunii simple asupra încălzirii nulului sau asupra mașinilor rotative.

Figura 50 : Ecranul modului expert pentru tensiunea simplă (montaje trifazate cu nul)

Pentru montajele trifazate fără nul, submeniul U afișează influența armonicelor tensiunii compuse asupra încălzirii mașinilor rotative.

6.5.2. ECRANUL DE AFIȘARE AL MODULUI EXPERT PENTRU CURENT

Submeniul A afișează influența armonicelor curentului asupra încălzirii nulului sau asupra mașinilor rotative.

Figura 51 : Ecranul modului expert pentru curent

Tasta *Forme de undă* permite afișarea curbelor de curent și tensiune, precum și a valorilor măsurate și calculate, pornind de la tensiuni și curenți (în afară de putere, energie și armonice). Acesta este ecranul care apare la punerea aparatului sub tensiune.

Figura 52 : Ecranul modului formelor de undă

7.1. MĂSURAREA VALORII EFICACE REALE

Submeniul RMS afișează formele de undă pe o perioadă a semnalelor măsurate și valorile eficace reale ale tensiunii și curentului.

Alegerea curbelor de afișat depinde de tipul de conectare (vezi § 4.6) :

- Monofazat 2 fire: nu există opțiuni (L1)
- Bifazat 3 fire:
 - Pentru RMS, THD, CF, I și IIII : U, 2V, 2A, L1, L2
 - Pentru 40 : 2V, 2A, L1, L2
- Trifazat 3 fire: 3U, 3A
- Trifazat 4 fire:
 - Pentru RMS, THD, CF, I și IIII : 3U, 3V, 4A, L1, L2, L3
 - Pentru 40: 3U, 3V, 3A, L1, L2, L3

Afișajele ecranului prezentate în exemplu sunt cele obținute pentru conexiunea trifazată cu 4 fire.

7.1.1. ECRANUL DE AFIȘARE A VALORILOR EFICACE ÎN 3U

Acest ecran afișează cele trei tensiuni compuse ale unui sistem trifazat.

Valorile instantanee ale semnalelor, în poziția cursorului.

t: timpul, raportat la începutul perioadei.

U1: valoarea instantanee a tensiunii compuse între fazele 1 și 2 (U₁₂). **U2:** valoarea instantanee a tensiunii compuse între fazele 2 și 3 (U₂₃). **U3:** valoarea instantanee a tensiunii compuse între fazele 3 și 1 (U₃₁).

Figura 53 : Ecranul de afișare a valorilor eficace în 3U

7.1.2. ECRANUL DE AFIȘARE A VALORILOR EFICACE ÎN 3V

Acest ecran afișează cele trei tensiuni simple ale unui sistem trifazat.

Figura 54 : Ecranul de afișare a valorilor eficace în 3V

7.1.3. ECRANUL DE AFIȘARE A VALORILOR EFICACE ÎN 4A

Acest ecran afișează cei trei curenți prin faze și curentul prin nul, într-un sistem trifazat.

Valorile instantanee ale semnalelor la intersecția dintre cursor și curbe. **t:** timpul, raportat la începutul perioadei.

A1: valoarea instantanee a curentului fazei 1.

A2: valoarea instantanee a curentului fazei 2.

A3: valoarea instantanee a curentului fazei 3.

AN: valoarea instantanee a curentului prin nul.

Figura 55 : Ecranul de afișare a valorilor eficace în 4A

7.1.4. ECRANUL DE AFIȘARE A VALORILOR EFICACE PENTRU L1

Acest ecran afișează tensiunea simplă și curentul prin faza 1.

Figura 56 : Ecranul de afișare a valorilor eficace pentru L1

Observație: Filtrele L2 și L3 afișează curentul și tensiunea pe fazele 2, respectiv 3. Ecranul este identic cu cel afișat pentru filtrul L1.

7.2. MĂSURAREA DISTORSIUNII ARMONICE TOTALE

Submeniul **THD** afișează formele de undă ale semnalelor măsurate pe o perioadă (alternanță) și nivelurile distorsiunilor armonice totale ale tensiunii și curentului. Nivelurile sunt afișate fie cu valoarea eficace a fundamentalei de referință (%f), fie (numai pentru C.A 8333) cu valoarea eficace de referință fără c.c. (%r), în funcție de referința aleasă în meniul de configurare.

7.2.1. ECRANUL DE AFIŞARE THD ÎN 3U

Acest ecran afișează formele de undă ale tensiunilor compuse pe o perioadă și nivelurile distorsiunilor armonice totale.

Figura 57 : Ecranul de afișare thd în 3U

Valorile instantanee ale semnalelor, în poziția cursorului.

t: timpul, raportat la începutul perioadei.

U1: valoarea instantanee a tensiunii compuse între fazele 1 și 2 (U_{12}). **U2:** valoarea instantanee a tensiunii compuse între fazele 2 și 3 (U_{23}).

U3: valoarea instantanee a tensiunii compuse între fazele 3 și 1 (U_{31}).

7.2.2. ECRANUL DE AFIŞARE THD ÎN 3V

Acest ecran afișează formele de undă ale tensiunilor simple pe o perioadă și nivelurile distorsiunilor armonice totale.

Figura 58 : Ecranul de afișare thd în 3V

Valorile instantanee ale semnalelor, în poziția cursorului. t: timpul, raportat la începutul perioadei. V1: valoarea instantanee a tensiunii

simple a fazei 1. V2: valoarea instantanee a tensiunii simple a fazei 2.

V3: valoarea instantanee a tensiunii simple a fazei 3.

7.2.3. ECRANUL DE AFIŞARE THD ÎN 4A

Acest ecran afișează formele de undă ale curenților de fază pe o perioadă și nivelurile distorsiunilor armonice totale.

Figura 59 : Ecranul de afişare thd în 4A

Valorile instantanee ale semnalelor, în poziția cursorului.

t: timpul, raportat la începutul perioadei.

A1: valoarea instantanee a curentului fazei 1.

A2: valoarea instantanee a curentului fazei 2.

A3: valoarea instantanee a curentului fazei 3.

AN: valoarea instantanee a curentului prin nul.

Observație: Filtrele L1, L2 și L3 afișează nivelurile distorsiunilor armonice totale ale curentului, respectiv tensiunii pe fazele 1, 2 și 3.

7.3. MĂSURAREA FACTORULUI DE VÂRF

Submeniul CF afișează formele de undă ale semnalelor măsurate pe o perioadă și factorul de vârf al tensiunii și al curentului.

7.3.1. ECRANUL DE AFIŞARE CF ÎN 3U

Acest ecran afișează formele de undă ale tensiunilor compuse pe o perioadă și factorii de vârf.

Figura 60 : Ecranul de afișare cf în 3U

Valorile instantanee ale semnalelor, în poziția cursorului.

t: timpul, raportat la începutul perioadei.

U1: valoarea instantanee a tensiunii compuse între fazele 1 și 2 (U_{12}). **U2:** valoarea instantanee a tensiunii compuse între fazele 2 și 3 (U_{23}). **U3:** valoarea instantanee a tensiunii compuse între fazele 3 și 1 (U_{31}).

7.3.2. ECRANUL DE AFIŞARE CF ÎN 3V

Acest ecran afișează formele de undă ale tensiunilor simple pe o perioadă și factorii de vârf.

Figura 61 : Ecranul de afișare CF ÎN 3V

Valorile instantanee ale semnalelor, în poziția cursorului.

t: timpul, raportat la începutul perioadei.

V1: valoarea instantanee a tensiunii simple a fazei 1.

V2: valoarea instantanee a tensiunii simple a fazei 2.

V3: valoarea instantanee a tensiunii simple a fazei 3.

7.3.3. ECRANUL DE AFIŞARE CF ÎN 4A

Acest ecran afișează formele de undă ale curenților pe o perioadă și factorii de vârf.

Observație: L1, L2 și L3 N afișează factorii de vârf ai curentului, respectiv tensiunii pe fazele 1, 2 și 3.

7.4. MĂSURAREA VALORILOR EXTREME ȘI MEDII ALE TENSIUNII ȘI CURENTULUI

Submeniul I afișează valorile eficace, maxime, minime și medii ale tensiunii și curentului, precum și cele ale vârfurilor pozitive și negative instantanee ale tensiunii și curentului.

Observație: Măsurătorile MAX și MIN sunt valori eficace calculate la fiecare semiperioadă (adică la fiecare 10 ms pentru un semnal de 50 Hz). Reîmprospătarea măsurătorilor are loc la fiecare 250 ms.

Măsurătorile RMS sunt calculate pe o secundă.

7.4.1. ECRANUL DE AFIŞARE MAX-MIN ÎN 3U

Acest ecran afișează valorile eficace, maxime, minime și medii și valorile de vârf pozitive și negative ale tensiunilor compuse.

\sim		50.00 (2))Hz O	2/12/13 15:49		 Coloane de valori pentru fiecare curbă (1, 2 și 3). MAX: valoarea eficace maximă a tensiunii compuse, măsurate de la aprinderea
мах	402.1	404.7	404.4	V≃		aparatului sau de la ultima apăsare pe tasta 🛶 .
RMS	400.2	402.8	402.7	V≃	3U 3V	RMS : valoarea eficace reală a tensiunii compuse.
MIN	397.9	401.0	400.7	V≃	4A L1	aparatului sau de la ultima apăsare pe tasta \downarrow .
РК+	+566.3	+569.3	+569.6	v	L2 L3 ❤	PK+ : valoarea de vârf maximă a tensiunii compuse, de la aprinderea aparatului sau de la ultima apăsare pe tasta <i>→</i> .
РК-	-566.0	-569.6	-569.4	v		PK- : valoarea de vârf minimă a tensiunii compuse, de la aprinderea aparatului sau de la ultima apăsare pe tasta \leftarrow .
R	IS TH	HD CF	1		40	

Figura 63 : Ecranul de afișare Max-Min în 3U

7.4.2. ECRANUL DE AFIŞARE MAX-MIN ÎN 3V

Acest ecran afișează valorile eficace, maxime, minime și medii și valorile de vârf pozitive și negative ale tensiunilor simple.

Coloane de valori pentru fiecare curbă de tensiune (1, 2 și 3).

MAX: valoarea eficace a tensiunii simple maxime, măsurate de la aprinderea aparatului sau de la ultima apăsare pe tasta \leftrightarrow .

RMS: valoarea eficace reală a tensiunii simple.

MIN: valoarea eficace a tensiunii simple minime, măsurate de la aprinderea aparatului sau de la ultima apăsare pe tasta \bowtie .

PK+: valoarea de vârf maximă a tensiunii simple, de la aprinderea aparatului sau de la ultima apăsare pe tasta \leftarrow .

PK-: valoarea de vârf minimă a tensiunii simple, de la aprinderea aparatului sau de la ultima apăsare pe tasta \leftarrow .

Figura 64 : Ecranul de afișare Max-Min în 3V

7.4.3. ECRANUL DE AFIŞARE MAX-MIN ÎN 4A

Acest ecran afișează valorile eficace, maxime, minime și medii și valorile de vârf pozitive și negative ale curenților prin faze și prin nul.

\square		50.00H	lz 0	2/12/13 15	:50 📖		Coloana de valori pentru nul: parametrii RMS, PK+ și PK
MAX RMS	① 45.1 44.9 44.6	② 37.1 37.0 36.8	③- 36.5 36.4 36.1	A~ 9.0	A~	3U 3V 4A	Coloane de valori pentru fiecare curbă a curentului (1, 2 și 3). MAX: valoarea eficace maximă a curentului, de la aprinderea aparatului sau de la ultima apăsare pe tasta <i>→</i> . RMS: valoarea eficace reală a curentului.
MIN PK+ PK- RMS	+63.5 -63.4	+52.3 -52.3	+51.4 -51.3	+12.7 -12.7	A A		 MIN: valoarea eficace minimă a curentului, de la aprinderea aparatului sau de la ultima apăsare pe tasta ↓. PK+: valoarea de vârf maximă a curentului, de la aprinderea aparatului sau de la ultima apăsare pe tasta ↓. PK-: valoarea de vârf minimă a curentului, de la aprinderea aparatului sau de la ultima apăsare pe tasta ↓.

Figura 65 : Ecranul de afișare Max-Min în 4A

7.4.4. ECRANUL DE AFIŞARE MAX-MIN ÎN L1

Acest ecran afișează valorile eficace, maxime, minime și medii și valorile de vârf pozitive și negative ale tensiunii simple și ale curentului pentru faza 1.

\sim	}	50.00Hz 02/12/13 15:50	
		(A)	
мах	232.5 v≃	45.1 a~	<u>^</u>
RMS	228.6 v≃	44.9 a~	3U 3V
MIN	227.2 v≃	44.6 a~	4A <u> 1</u>
РК+	+321.0 v	+63.5 a	
РК-	–320.9 v	-63.4 а	
RN	IS THD		40

Informații identice cu cele pentru tensiunea simplă, dar privind curentul.

Coloana de valori pentru tensiune.
MAX: valoarea eficace maximă a tensiunii simple, de la aprinderea aparatului sau
de la ultima apăsare pe tasta 🛶 .
RMS: valoarea eficace reală a tensiunii simple.
MIN: valoarea eficace minimă a tensiunii simple, de la aprinderea aparatului sau
de la ultima apăsare pe tasta 🛶 .
PK+: valoarea de vârf maximă a tensiunii simple, de la aprinderea aparatului sau
de la ultima apăsare pe tasta 🛶 .
PK-: valoarea de vârf minimă a tensiunii simple, de la aprinderea aparatului sau
de la ultima apăsare pe tasta

Figura 66 : Ecranul de afișare Max-Min în L1

7.5. AFIŞAJUL SIMULTAN

Submeniul iIIII afişează toate mărimile asociate tensiunii și curentului (RMS, DC, THD, CF, PST, FHL și FK).

7.5.1. ECRANUL DE AFIȘARE SIMULTANĂ ÎN 3U

Acest ecran afișează valorile RMS, DC, THD și CF ale tensiunilor compuse.

02/12/13 15:45 💷 1 2 3 Coloana de valori pentru tensiunea compusă (fazele 1, 2 și 3). RMS: valoarea eficace reală calculată pe 1 secundă. 400.3 402.8 402.7 v≃ RMS DC: componenta continuă. +0.3 -0.1 -0.2 v= DС THD: nivelul distorsiunii armonice totale, cu valoarea de referintă eficace a funda-0.0 0.0 0.0 %f THD mentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referintă eficace totală fără c.c. (%r). 0.0 0.0 0.0 %r CF: factor de vârf calculat pe 1 secundă. 1.41 1.41 1.41 CF

> RMS THD CF I

 ~ 1

Figura 67 : Ecranul de afișare simultană în 3U

50.01 Hz

3U 3V 4A L1

7.5.2. ECRANUL DE AFIŞARE SIMULTANĂ ÎN 3V

Acest ecran afișează valorile RMS, DC, THD, CF și PST ale tensiunilor simple.

	\square		50.02H	z 02/1	2/13/15:47	
Coloana de valori pentru tensiunea simplă (fazele 1, 2 si 3)		- 1	2	3		
RMS: valoarea eficace reală calculată pe 1 secundă.	RMS	231.6	231.6	234.5		
DC: componenta continuă.	рс	+0.2	-0.2	+0.0		30
THD: nivelul distorsiunii armonice totale, cu valoarea de referință eficace a fun-	THD	0.0	0.0	0.0		3V 4A
damentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace		0.0	0.0	0.0		L1 L2
Totala fara c.c. (%r). CE: factor de vârf calculat pe 1 secundă	CF	1.46	1.46	1.46		
PST: scânteierea pe termen scurt, calculată pe 10 minute.	рът	1.05	1.05	1.05		
	RMS	S THD	CF			<u>4</u> 0

Figura 68 : Ecranul de afișare simultană în 3V

7.5.3. ECRANUL DE AFIȘARE SIMULTANĂ ÎN 4A

Acest ecran afisează valorile RMS, DC (numai dacă cel puțin unul dintre senzorii de curent poate măsura curentul continuu), THD, CF, FHL și FK ale curenților prin faze și prin nul.

Coloana de valori RMS și (dacă senzorul de curent permite) DC, precum și CF pentru nul.

Coloane de valori pentru curent (fazele 1, 2 si 3). RMS: valoarea eficace reală calculată pe 1 secundă. DC: componenta continuă. THD: nivelul distorsiunii armonice totale, cu valoarea de referință eficace a fundamentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace totală fără c.c. (%r). CF CF: factor de vârf calculat pe 1 secundă.

FHL: factor de pierdere armonică. Supradimensionarea transformatorului în funcție de armonice.

FK: factorul K. Declasarea transformatorului în funcție de armonice.

02/12/13 14:49 0 ന 0 0 400 400 400 2 RMS A≃ +0 +0 +0 +0A= DC 30 3V THD 0.0 0.0 0.0 %f 0.0 0.0 0.0 L2 1.42 1.41 1.41 1.42 L3 FHL 1.00 1.00 1.00 1.00 1.00 1.00 FK RMS THD CF I

Figura 69 : Ecranul de afișare simultană în 4A

Observație: Pentru a putea regla zeroul senzorilor de curent care măsoară în curent continuu, valorile c.c. nu sunt anulate niciodată.

7.5.4. ECRANUL DE AFIȘARE SIMULTANĂ ÎN L1

Acest ecran afișează valorile RMS, DC, THD, CF pentru tensiunea simplă și curent, PST pentru tensiunea simplă și FHL și FK ale curentului pentru faza 1.

Coloana de valori pentru tensiunea simplă.

RMS: valoarea eficace reală calculată pe 1 secundă.

DC: componenta continuă.

THD: nivelul distorsiunii armonice totale, cu valoarea de referință eficace a fundamentalei (%f) sau (numai pentru C.A 8333) cu valoarea de referință eficace totală fără c.c. (%r). **CF:** factor de vârf calculat pe 1 secundă.

PST: scânteierea pe termen scurt, calculată pe 10 minute.

\sim			50.00 Hz	02/	12/13 14:53	<u></u>
	∕ ⊘			⊘-		
RMS	229.2	V≃		400	A≃	
рс	+0	v =		+0	A=	30
тно	0.0	%f		0.0	%f	3V 4A
	0.0	%r		0.0	%r	L1
CF	1.42			1.41		L2 L3
рѕт	1.05		FHL	1.00		•
			FK	1.00		
RM	S TH	DI	CF	T		1.0

Figura 70 : Ecranul de afișare simultană în L1

Coloana de valori pentru curent. Valorile RMS, DC (dacă senzorul de curent permite), THD și CF. FHL: factor de pierdere armonică. Supradimensionarea transformatorului în funcție de armonice. FK: factorul K. Declasarea transformatorului în funcție de armonice.

Observații: Valoarea DC a curentului prin faza 1 nu este afișată decât dacă senzorul de curent asociat poate măsura curent continuu.

L2 și L3 creează un afișaj simultan pentru curentul, respectiv tensiunea simplă pe fazele 2 și 3.

7.6. AFIŞAREA DIAGRAMEI FRESNEL

Submeniul 40 afișează reprezentarea vectorială a componentelor fundamentale ale tensiunilor și curenților. Sunt date mărimile asociate (modulul și faza vectorilor), precum și nivelurile de dezechilibru invers pentru tensiune și curent.

Observație: Pentru a permite o afișare a tuturor vectorilor, cei al căror modul a fost prea mic pentru a fi reprezentați există totuși, dar denumirile lor sunt urmate de un asterisc (*).

7.6.1. ECRANUL DE AFIȘARE A DIAGRAMEI FRESNEL ÎN 3V

Acest ecran afișează reprezentarea vectorială a componentelor fundamentale ale tensiunilor simple și curenților. Sunt date mărimile asociate (modulul și faza vectorilor tensiunii simple), precum și nivelurile de dezechilibru invers pentru tensiune. Vectorul de referință al reprezentării (la 3 ore) este V1.

Coloana de valori pentru fiecare vector (1, 2 și 3).

[V1], **[V2] §i [V3]**: modulele vectorilor componentelor fundamentale ale tensiunilor simple (fazele 1, 2 și 3). Φ_{12} : defazajul componentei fundamentale a fazei 1, în raport cu cea a fazei 2.

 Φ_{23} : defazajul componentei fundamentale a fazei 2, în raport cu cea a fazei 3.

 Φ_{31} : defazajul componentei fundamentale a fazei 3, în raport cu cea a fazei 1.

Vunb: nivelul dezechilibrului invers al tensiunilor.

Figura 71 : Ecranul de afișare a diagramei Fresnel în 3V

7.6.2. ECRANUL DE AFIȘARE A DIAGRAMEI FRESNEL ÎN 3U

Acest ecran afișează reprezentarea vectorială a componentelor fundamentale ale tensiunilor compuse. Sunt date mărimile asociate (modulul și faza vectorilor tensiunii compuse), precum și nivelurile de dezechilibru invers pentru tensiune. Vectorul de referință al reprezentării (la 3 ore) este U1.

Informațiile afișate sunt identice cu cele descrise în § 7.6.1 dar pentru tensiunea compusă.

7.6.3. ECRANUL DE AFIȘARE A DIAGRAMEI FRESNEL ÎN 3A

Pentru sursele care au un nul, acest ecran afișează reprezentarea vectorială a componentelor fundamentale ale tensiunilor simple și curenților. În cazul trifazat cu 3 fire (sursă fără nul), acest ecran afișează numai reprezentarea vectorială a componentelor fundamentale ale curenților. Sunt date mărimile asociate (modulul și faza vectorilor curentului), precum și nivelurile de dezechilibru invers pentru curent. Vectorul de referință al reprezentării (la 3 ore) este A1.

Informațiile afișate sunt identice cu cele descrise în § 7.6.1 dar pentru curent.

7.6.4. ECRANUL DE AFIȘARE A DIAGRAMEI FRESNEL ÎN L1

În prezența nulului, acest ecran afișează reprezentarea vectorială a componentelor fundamentale ale tensiunii simple și curentului pentru o fază. Sunt date mărimile asociate (modulul și faza vectorilor curentului și tensiunii simple). Vectorul de referință al reprezentării (la 3 ore) este cel al curentului.

Figura 72 : Ecranul de afișare a diagramei Fresnel în L1

Observație: L2 și L3 afișează reprezentarea vectorială a componentelor fundamentale ale tensiunilor simple, respectiv ale curenților pentru fazele 2 și 3. Sunt date mărimile asociate (modulul și faza vectorilor de curent, respectiv de tensiune simplă, pentru fazele 2 și 3). Vectorul de referință al reprezentării (la 3 ore) este cel al curentului (respectiv A2 și A3).

Modul *Alarmă* detectează depășirile pragurilor pentru fiecare dintre parametrii următori: Hz, Urms, Vrms, Arms, Ucf, Vcf, Acf, Uthdf, Vthdf, Athdf, Uthdr, Vthdr, Athdr, |P|, |Q₁| sau N, D, S, |PF|, |cos Φ|, |tg Φ|, PST, FHL, FK, Vunb, Uunb (pentru o sursă trifazată fără nul) Aunb, U-h, V-h, A-h și |S-h| (vezi tabelul abrevierilor din § 2.9).

Pragurile de alarmă:

- trebuie să fi fost programate pe ecranul Configurare/mod alarmă (vezi § 4.10).
- trebuie să fie active (marcate cu un punct roşu pe acelaşi ecran de mai sus).

Alarmele stocate pot fi apoi transferate pe PC prin intermediul aplicației PAT2 (vezi § 13). Sunt posibile peste 4.000 captări de

me (vezi § 8.2).

Figura 73 : Ecranul modului de alarmă

Pictogramele 🕑 și 🖱 au funcțiile următoare:

- Salidarea programării unei campanii şi lansarea campaniei de alarme.
- Oprirea voluntară a campaniei de alarme.

8.1. CONFIGURAREA MODULUI DE ALARMĂ

Submeniul 🕬 afișează lista alarmelor configurate (vezi § 4.10). Această tastă de scurtătură permite definirea sau modificarea configurației alarmelor.

Pentru a reveni la ecranul Programarea unei campanii, apăsați pe 🍮.

8.2. PROGRAMAREA UNEI CAMPANII DE ALARME

Submeniul 🖬 permite definirea caracteristicilor orare pentru începutul și sfârșitul unei campanii de alarme (vezi figura 73).

Pentru a programa o campanie de alarme, introduceți data și ora inițiale, data și ora finale și denumirea campaniei.

Pentru a modifica o dată, deplasați cursorul galben pe ea cu ajutorul tastelor ▲ și ▼ apoi confirmați cu tasta ←. Modificați valoarea cu ajutorul tastelor ▲, ▼, ◀ și ▶, apoi confirmați din nou.

Denumirea poate avea maximum 8 caractere. Mai multe campanii pot avea aceeași denumire. Caracterele alfanumerice disponibile sunt majusculele de la A la Z și cifrele de la 0 la 9. Ultimele 5 denumiri atribuite (în modurile tranzitoriu, tendință și alarmă) sunt păstrate în memorie. Deci, la introducerea unei denumiri, aceasta poate fi completată automat.

Observații: Data și ora inițiale trebuie să fie ulterioare datei și orei actuale.

Data și ora finale trebuie să fie ulterioare datei și orei inițiale.

Programarea unei campanii de alarme nu este posibilă, dacă este în curs o captare a curentului de pornire.

Odată terminată programarea, lansați campania apăsând pe tasta 🕑. Pictograma 🕑 barei de stare clipește, indicând că a fost lansată campania. Tasta 🖱 înlocuiește tasta 🕑 și permite oprirea campaniei, înainte de încheierea normală a acesteia. Alarmele în curs (neterminate) vor fi înregistrate în campanie, dacă durata lor este mai mare sau egală cu durata lor minimă programată.

Este afișat mesajul *Campanie în așteptare*, până când se ajunge la ora de începere. Apoi este înlocuit cu mesajul *Campanie în curs*. Când se ajunge la ora finală, revine ecranul *Programarea unei campanii* cu tastae . Deci este posibilă programarea unei noi campanii.

În timpul unei campanii de alarme, numai câmpul datei finale poate fi modificat. Este evidențiat automat cu galben.

8.3. VIZUALIZAREA LISTEI CAMPANIILOR

Pentru a vizualiza lista campaniilor efectuate, apăsați pe tasta 龙. Este afișat ecranul Lista campaniilor de alarme. Lista poate conține maximum 2 campanii.

Figura 74 : Ecranul de afișare a listei campaniilor

Dacă data finală a campaniei este cu roșu, aceasta se întâmplă pentru că nu corespunde datei finale programate inițial:

- fie din cauza unei probleme legate de alimentare (baterie slabă sau deconectarea aparatului alimentat numai de la rețea),
- fie pentru că memoria era plină.

8.4. VIZUALIZAREA LISTEI ALARMELOR

Pentru a selecta o campanie, deplasați cursorul pe ea cu ajutorul tastelor ▲ și ▼. Câmpul selectat este marcat cu litere îngroșate. Apoi confirmați cu tasta u . Astfel aparatul afișează alarmele sub formă de listă.

Figura 75 : Ecranul Lista alarmelor

- Dacă o durată a alarmei este afișată cu roșu, aceasta se întâmplă pentru că a fost scurtată: ■ fie din cauza unei probleme de alimentare (baterie slabă).
- 🔳 fie din cauza unei opriri manuale a campaniei (apăsare pe 🕮) sau stingerii voluntare a aparatului (apăsare pe tasta 📐).
- fie pentru că memoria era plină.
- fie din cauza unei erori de măsurare.
- fie din cauza unei incompatibilități între mărimea urmărită și configurația aparatului (de ex., retragerea unui senzor de curent).

În ultimele două cazuri, extrema este de asemenea afișată cu roșu.

Pentru a reveni la ecranul Lista campaniilor, apăsați pe 🍮.

8.5. ANULAREA UNEI CAMPANII DE ALARME

În timp ce vizualizați lista campaniilor efectuate (vezi figura 74), selectați campania de șters. Pentru aceasta, deplasați cursorul pe ea cu ajutorul tastelor ▲ și ▼. Campania selectată este marcată cu litere îngroșate.

Apăsați apoi pe tasta 📟. Apăsați pe tasta ← pentru a confirma sau pe ᅩ pentru a anula.

Observație: Nu se poate anula campania de alarme în curs.

8.6. ȘTERGEREA TUTUROR CAMPANIILOR DE ALARME

Ștergerea tuturor campaniilor de alarme nu se poate face decât pornind din meniul Configurare, submeniul Ștergerea datelor (vezi § 4.11)

Modul Tendintă 🖾 înregistrează evoluțiile parametrilor definiți în prealabil prin intermediul ecranului Configurare/Modul tendintă (vezi § 4.9). Acest mod gestionează până la 250 Mo (C.A 8331: 28 Mo) de date.

Figura 76 : Ecranul modului tendință

9.1. PROGRAMAREA SI LANSAREA UNEI ÎNREGISTRĂRI

Submeniul 🖬 definește caracteristicile unei înregistrări (vezi figura 76).

Pentru a lansa rapid o înregistrare, apăsați pe tasta 🐌. Înregistrarea va începe imediat și se va efectua în fiecare secundă și pentru toate mărimile, până când memoria se umple complet. Configurația afisată este 🕮.

Pentru a programa o înregistrare, înainte de a o lansa, alegeti configurația 10 - 10, introduceți data si ora de începere, data si ora de terminare, perioada și denumirea înregistrării.

Pentru a modifica o dată, deplasați cursorul galben pe ea cu ajutorul tastelor 🛦 și 🛡 apoi confirmați cu tasta 🖵. Modificați valoarea cu ajutorul tastelor ▲, ♥, ◀ și ▶, apoi confirmați din nou.

Perioada de integrare corespunde timpului pe parcursul căruia măsurătorile fiecărei valori înregistrate vor fi mediate (media aritmetică). Valorile posibile pentru perioadă sunt: 1 s, 5 s, 20 s, 1 min, 2 min, 5 min, 10 min si 15 min.

Denumirea poate avea maximum 8 caractere. Mai multe înregistrări pot avea aceeași denumire. Caracterele alfanumerice disponibile sunt majusculele de la A la Z și cifrele de la 0 la 9. Ultimele 5 denumiri atribuite (în modurile tranzitoriu, tendință și alarmă) sunt păstrate în memorie. Deci, la introducerea unei denumiri, aceasta poate fi completată automat.

Observații: Data și ora inițiale trebuie să fie ulterioare datei și orei actuale.

Data si ora finale trebuie să fie ulterioare datei si orei inițiale.

Odată terminată programarea, lansati înregistrarea apăsând pe tasta 🕑. Dacă spatiul disponibil din memorie este insuficient, aparatul semnalează aceasta. Pictograma 🕑 barei de stare clipeste, indicând că înregistrarea a fost lansată. Tasta 🖱 înlocuieste tasta 🕑 si permite oprirea înregistrării, înainte de încheierea normală a acesteia.

Este afișat mesajul Înregistrare în așteptare, până când se ajunge la ora de începere. Apoi este înlocuit cu mesajul Înregistrare în curs. Când se ajunge la ora finală, revine ecranul Programarea unei înregistrări cu tasta 🕑. Deci este posibilă programarea unei noi înregistrări.

În timpul unei înregistrări a tendintei, numai câmpul datei finale poate fi modificat. Este evidențiat automat cu galben.

9.2. CONFIGURAREA MODULUI TENDINȚĂ

Submeniul 🕬 afisează lista configurărilor de înregistrare a tendintei (vezi § 4.9). Această tastă de scurtătură permite definirea sau modificarea configurațiilor de înregistrare a tendinței.

9.3. VIZUALIZAREA LISTEI ÎNREGISTRĂRILOR

Submeniul 찬 afișează lista înregistrărilor efectuate.

Figura 77 : Ecranul de afișare a listei înregistrărilor

Dacă data finală apare cu roșu, aceasta este pentru că nu corespunde datei finale programate inițial, din cauza unei probleme de alimentare (baterie slabă sau deconectarea aparatului alimentat numai de la rețea).

9.4. ȘTERGEREA ÎNREGISTRĂRILOR

În timp ce vizualizați lista înregistrărilor (vezi figura 77), selectați înregistrarea de șters. Pentru aceasta, deplasați cursorul pe ea cu ajutorul tastelor ▲ și ▼. Înregistrarea selectată este marcată cu litere îngroșate.

Apăsați apoi pe tasta 📟. Apăsați pe tasta ← pentru a confirma sau pe 🍮 pentru a anula.

9.5. VIZUALIZAREA ÎNREGISTRĂRILOR

9.5.1. CARACTERISTICILE ÎNREGISTRĂRII

În timp ce vizualizați lista înregistrărilor (vezi figura 77), selectați înregistrarea de vizualizat. Pentru aceasta, deplasați cursorul pe ea cu ajutorul tastelor ▲ și ▼. Înregistrarea selectată este marcată cu litere îngroșate. Apoi apăsați pe tasta

pentru a confirma.

Figura 78 : Ecranul cu caracteristicile înregistrării

Dacă o mărime nu apare în file, calculul acesteia era incompatibil cu configurația aleasă (conectare, tipuri de senzori, divizoare programate).

De exemplu, dacă modul de calcul ales în timpul programării este Mărimi neactive nedescompuse (vezi § 4.5.1), atunci fila D nu va apărea.

Apăsați pe o tastă galbenă pentru a vizualiza curba.

9.5.2. CURBELE DE TENDINȚĂ

Figura 79 : Vrms (3L) fără MIN-AVG-MAX

Perioada de afișare a acestei curbe este de un minut. Perioada de înregistrare fiind de o secundă, fiecare punct al acestei curbe corespunde unei valori înregistrate într-o secundă din fiecare minut. Prin urmare, există o pierdere de informații (59 valori din 60), dar afișajul este rapid.

Observații: Valorile cursorului cu roșu indică valorile saturate.

Liniuțele negre - - - - indică valorile eronate.

Liniuțele roșii - - - - indică valori necalculate (ca urmare a unei opriri a calculului din modul MIN-MAX-MED prin apăsarea pe 🖱).

Figura 80 : Vrms (3L) cu MIN-AVG-MAX

Perioada de afișare a acestei curbe este tot de un minut. Dar, modul MIN-MED-MAX fiind activat, fiecare punct de pe această curbă corespunde mediei aritmetice a celor 60 valori înregistrate în fiecare secundă. Prin urmare, acest afișaj este mai exact, întrucât nu există pierderi de informații, dar mai lent (vezi tabelul din figura 96).

Pentru a opri calculul din modul MIN-MED-MAX, apăsați pe .

Observații: În timpul calculului din modul MIN-MED-MAX este afișată o bară de progres pentru acest calcul, în banda de stare, în locul barei de poziționare a ferestrei de vizualizare a înregistrării.

Modul MIN-MED-MAX nu este accesibil atunci când este în curs o înregistrare a tendinței.

Pentru a reveni la ecranul Caracteristicile înregistrării, apăsați pe 🍮

Pentru a poziționa cursorul pe prima apariție a valorii maxime.

Figura 81 : Arms (N) fără MIN-AVG-MAX

Apăsarea pe tasta >1 < sau >1 < pune automat zoom înainte la nivelul cel mai puternic (perioada de afișare identică cu cea de în-registrare) și dezactivează modul MIN-MED-MAX, dacă a fost activat.

Figura 82 : Arms (N) cu MIN-AVG-MAX

Perioada de afișare a acestei curbe este de un minut. Fiecare punct de pe curba valorilor medii corespunde mediei aritmetice a celor 60 valori înregistrate în toate secundele. Fiecare punct de pe curba valorilor maxime corespunde maximului celor 60 valori înregistrate în toate secundele. Fiecare punct de pe curba valorilor minime corespunde minimului celor 60 valori înregistrate în toate secundele.

Prin urmare, acest afișaj este mai exact decât cel precedent.

Pentru fiecare dintre faze (L1, L2 și L3), la fiecare înregistrare a unei valori dintr-o secundă (perioada de înregistrare), aparatul înregistrează de asemenea valorile eficace minimă și maximă pe o semiperioadă timp de o secundă. Aceste trei curbe sunt reprezentate în figura de mai sus.

Această curbă diferă ușor de cea precedentă, deoarece, în modul MIN-MED-MAX nu există pierderi de informații.

Observație: Pentru mărimile (P, Q1 sau N, S, D, PF, cos Φ și tg Φ) și pentru o sursă trifazată fără nul sunt reprezentate numai mărimile totale.

Figura 85 : tan Φ (L1) fără MIN-AVG-MAX pentru o conectare trifazată cu nul

Figura 86 : tan Φ (L1) cu MIN-AVG-MAX

Pentru a modifica scara afişajului între 1 minut și 5 zile.

Figura 88 : P (Σ) cu MIN-AVG-MAX

Această curbă diferă ușor de cea precedentă, deoarece, în modul MIN-MED-MAX nu există pierderi de informații.

Activarea modului MIN-MED-MAX pentru puteri permite afișarea deasupra curbei a valorii medii a puterii la data cursorului, precum și a valorilor maxime și minime ale puterii pe perioada de afișare. De remarcat că, spre deosebire de alte mărimi, este reprezentată numai histograma valorilor medii.

Data cursorului (data de terminare a selecției). Pentru a deplasa cursorul, utilizați tastele ◄ sau ►.

Figura 89 : Ph (Σ) fără MIN-AVG-MAX

Perioada de afișare a acestei histograme este de un minut. Perioada de înregistrare fiind de o secundă, fiecare bară din această histogramă corespunde unei valori înregistrate într-o secundă din fiecare minut. În modul de calcul al energiei se efectuează sumarea puterilor pe barele selectate.

Figura 90 : Ph (Σ) cu MIN-AVG-MAX

Modul MIN-MED-MAX fiind activat, afișajul diferă ușor de cel precedent, deoarece nu există pierdere de informații.

Figura 91 : cos
(L1) fără MIN-AVG-MAX

Perioada de afișare a acestei curbe este de două ore. Perioada de înregistrare fiind de o secundă, fiecare punct al acestei curbe corespunde unei valori înregistrate într-o secundă la fiecare două ore. Prin urmare, există o pierdere sistematică de informații (7.199 valori din 7.200), dar afișajul este rapid.

Figura 92 : $\cos \Phi$ (L1) cu MIN-AVG-MAX

57

Această curbă diferă mult de cea precedentă, deoarece este activat modul MIN-MED-MAX. Fiecare punct de pe curba valorilor medii corespunde mediei aritmetice a celor 7.200 valori înregistrate în toate secundele. Fiecare punct de pe curba valorilor maxime corespunde maximului celor 7.200 valori înregistrate în toate secundele. Fiecare punct de pe curba valorilor minime corespunde minimului celor 7.200 valori înregistrate în toate secundele. Fiecare punct de pe curba valorilor minime corespunde minimului celor 7.200 valori înregistrate în toate secundele.

Prin urmare, acest afișaj este mai exact, întrucât nu există pierderi de informații, dar mai lent (vezi tabelul din figura 96).

În orice moment, apăsând pe această tastă, utilizatorul poate opri încărcarea valorilor înregistrate și calcularea valorilor afișate.

Figura 93 : $\cos \Phi$ (L1) încărcarea/calcularea valorilor.

Liniuțele semnalează că, în poziția cursorului, valoarea nu este disponibilă deoarece nu a fost calculată.

Figura 94 : $\cos \Phi$ (L1) oprirea prematură a încărcării/calculării valorilor.

Afișajul înregistrării nu este complet, deoarece construcția sa a fost oprită înainte de terminare.

Figura 95 : cos Φ (L1) încărcarea/calcularea completă a valorilor fără MIN-MED-MAX pentru o conectare trifazată cu nul.

Afișajul nu a fost oprit, așa că este complet.

Tabelul următor indică timpul de afișare a curbei pe ecran, în funcție de lărgimea ferestrei de afișare, pentru o perioadă de înregistrare de o secundă:

Lărgimea ferestrei de afișare (60 puncte sau incremente)	Incrementul grilei	Timpul de așteptare tipic pentru afișarea cu modul MIN-MED-MAX dezactivat	Timpul de așteptare tipic pentru afișarea cu modul MIN-MED-MAX activat
5 zile	2 ore	11 secunde	10 minute
2,5 zile	1 oră	6 secunde	5 minute
15 ore	15 minute	2 secunde	1 minut 15 secunde
10 ore	10 minute	2 secunde	50 secunde
5 ore	5 minute	1 secund	25 secunde
1 oră	1 minut	1 secund	8 secunde
20 minute	10 secunde	1 secund	2 secunde
5 minute	5 secunde	1 secund	1 secund
1 minut	1 secund	1 secund	1 secund

Figura 96 : Tabelul timpilor de afișare

Acest timp putând fi lung, afișarea poate fi oprită în orice moment apăsând pe tasta $\, \oplus \,$.

De asemenea, în orice moment este posibil:

- să se apese pe tastele 🔊 sau 🖉 pentru a modifica scara afişajului,
- să se apese pe tastele ◄ sau ► pentru a deplasa cursorul,
- să se apese pe tastele ▲ sau ▼ pentru a schimba filtrul de afișare.

Dar, atenție, aceasta poate reporni încărcarea și/sau calcularea valorilor de la început.

Tasta W permite afișarea mărimilor legate de puteri și energii.

Submeniurile disponibile depind de filtru.

- Pentru conectarea monofazată cu 2 fire, este disponibilă numai selectarea L1. Deci, filtrul nu este afişat, dar afişarea se face ca pentru L1.
- Pentru conectarea trifazată cu 3 fire, este disponibilă numai selectarea Σ Deci, filtrul nu este afişat, dar afişarea se face ca pentru Σ.

10.1. FILTRUL 3L

10.1.1. ECRANUL DE AFIŞARE A PUTERILOR

Submeniul **W...** permite afișarea puterilor.

Figura 97 : Ecranul puterilor în 3L.

Observație: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta D (putere deformantă) ar fi dispărut, iar eticheta Q₁ ar fi fost înlocuită cu eticheta N. Această putere neactivă nu poartă nicio amprentă și nu are efect inductiv sau capacitiv.

10.1.2. ECRANUL DE AFIȘARE A MĂRIMILOR ASOCIATE PUTERII

Submeniul PF... permite afișarea mărimilor asociate puterilor.

Figura 98 : Ecranul mărimilor asociate puterilor în 3L

10.1.3. ECRANUL DE AFIȘARE A ENERGIILOR CONSUMATE

Submeniul 🕮 afișează contoarele energiei consumate de sarcină.

Figura 99 : Ecranul de afișare a energiilor consumate în 3L

Observație: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta Dh (energie deformantă) ar fi dispărut, iar eticheta Q₁h ar fi fost înlocuită cu Nh. Această energie neactivă nu are efect inductiv sau capacitiv.

10.1.4. ECRANUL DE AFIȘARE A ENERGIILOR GENERATE

Submeniul 🚈 afișează contoarele energiei generate de sarcină.

Figura 100 : Ecranul de afișare a energiilor generate în 3L

Observație: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta Dh (energie deformantă) ar fi dispărut, iar eticheta Q₁h ar fi fost înlocuită cu Nh. Această energie neactivă nu are efect inductiv sau capacitiv.

10.2. FILTRELE L1, L2 ȘI L3

10.2.1. ECRANUL DE AFIȘARE A PUTERILOR ȘI MĂRIMILOR ASOCIATE

Submeniul W... afișează puterile și mărimile asociate.

Figura 101 : Ecranul de afișare a puterilor și mărimilor asociate în L1

Observații: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta D (putere deformantă) ar fi dispărut, iar eticheta Q1 ar fi fost înlocuită cu eticheta N. Această putere neactivă nu poartă nicio amprentă și nu are efect inductiv sau capacitiv.

Informațiile afișate pentru filtrele L2 și L3 sunt identice cu cele descrise mai sus, dar se referă la fazele 2 și 3.

10.2.2. ECRANUL DE AFIȘARE A CONTOARELOR DE ENERGIE

Submeniul Wh... afișează contoarele de energie.

Figura 102 : Ecranul de afișare a energiilor consumate și generate în L1

Observații: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta Dh (energie deformantă) ar fi dispărut, iar eticheta Q₁h ar fi fost înlocuită cu Nh. Această energie neactivă nu are efect inductiv sau capacitiv.

Informațiile afișate pentru filtrele L2 și L3 sunt identice cu cele descrise mai sus, dar se referă la fazele 2 și 3.

10.3. FILTRUL Σ

10.3.1. ECRANUL DE AFIȘARE A PUTERILOR ȘI MĂRIMILOR ASOCIATE TOTALE

Submeniul W... afișează puterile și mărimile asociate.

Figura 103 : Ecranul de afișare a puterilor și mărimilor asociate totale în Σ

Observație: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta D (putere deformantă) ar fi dispărut, iar eticheta Q₁ ar fi fost înlocuită cu eticheta N. Această putere neactivă nu poartă nicio amprentă și nu are efect inductiv sau capacitiv.

10.3.2. ECRANUL DE AFIȘARE A CONTOARELOR DE ENERGIE TOTALĂS

Submeniul Wh... afișează contoarele de energie.

Observații: Acest ecran corespunde opțiunii "mărimi neactive descompuse" în fila VAR din meniul Metode de calcul al modului Configurare. Dacă opțiunea ar fi fost "mărimi neactive nedescompuse", atunci eticheta Dh (energie deformantă) ar fi dispărut, iar eticheta Q1h ar fi fost înlocuită cu Nh. Această energie neactivă nu are efect inductiv sau capacitiv.

Pentru montajul trifazat cu 3 fire, este disponibilă numai afișarea mărimilor totale, iar metoda de calcul a puterilor utilizată este metoda celor 2 wattmetre (pentru conectările cu 2 senzori) sau celor 3 wattmetre cu nul virtual (pentru conectările cu 3 senzori) (vezi anexa § 16.1.4.2).

10.4. LANSAREA CONTORIZĂRII ENERGIEI

Pentru a lansa o contorizare a energiei, apăsați pe tasta 🕑 într-un ecran de afișare a energiilor (💬, 🗺 sau Wh...).

Figura 106 : Ecranul de contorizare a energiei în VARh

Diagrama utilizată este cea cu 4 cadrane (vezi § 16.5).

Observație: Pragul de nenul este de 11,6 kWh pentru tep nenuclear, respectiv de 3,84 kWh pentru tep nuclear.

10.5. ANULAREA CONTORIZĂRII ENERGIEI

Pentru a anula contorizarea energiei, apăsați pe 🖲.

Data și ora de terminare a contorizării sunt afișate alături de data și ora de începere.

Figura 107 : Ecranul de contorizare a energiei în VARh

O anulare a contorizării nu este definitivă. Pentru a o relua, apăsați din nou pe tasta 🕑.

Observație: Dacă nu este în curs nicio înregistrare, atunci anularea contorizării energiei determină apariția simbolului
^(IIII) clipitor în bara de stare (în locul simbolului ^(IIII)). Anularea contorizării energiei determină de asemenea înlocuirea tastei ^(IIII) cu tasta ^(IIIII).

10.6. ADUCEREA LA ZERO A CONTORIZĂRII ENERGIEI

Pentru a anula contorizarea, apăsați pe tasta . Apoi, pentru a reinițializa contorizarea energiei, apăsați pe tasta apoi confirmați cu tasta ... Toate valorile energiei (consumate și generate) sunt astfel aduse la zero. Tasta 🖻 permite fotografierea a până la 12 ecrane și vizualizarea fotografiilor înregistrate.

Alarmele înregistrate vor putea fi apoi transferate pe PC, prin intermediul aplicației PAT2 (Power Analyser Transfer).

11.1. FOTOGRAFIEREA ECRANULUI

Pentru a fotografia un ecran oarecare, apăsați timp de aproximativ 3 secunde pe tasta 🗐.

Aparatul nu poate înregistra decât 12 fotografii ale ecranului. Dacă doriți să înregistrați al 13-lea ecran, aparatul vă anunță că trebuie șterse fotografii, afișând pictograma 🚟 în locul 🗐.

11.2. GESTIONAREA FOTOGRAFIILOR ECRANULUI

Pentru a intra în modul fotografierii ecranului, apăsați scurt pe tasta 🖻. Astfel, aparatul afișează lista fotografiilor înregistrate.

Figura 108 : Ecranul de afișare a listei instantaneelor

1

11.2.1. VIZUALIZAREA UNEI FOTOGRAFII DIN LISTĂ

Pentru a vizualiza o fotografie, selectați-o din lista instantaneelor cu ajutorul tastelor ▲, ▼, ◀ și ►. Data și ora fotografiei selectate sunt marcate cu caractere îngroșate.

Apăsați pe \leftarrow pentru a afișa fotografia selectată. Pictograma 🗐 este afișată alternativ cu pictograma privind modul activ la momentul efectuării instantaneului (🕬, 🕪, **L**L, \bigcirc , \diamondsuit , \diamondsuit , **W**).

Pentru a reveni la lista fotografiilor ecranului, apăsați pe 🍮.

11.2.2. ȘTERGEREA UNEI FOTOGRAFII DIN LISTĂ

Pentru a șterge o fotografie, selectați-o din lista instantaneelor cu ajutorul tastelor ▲, ▼, ◀ și ►. Data și ora fotografiei selectate sunt marcate cu caractere îngroșate.

Apăsați pe tasta 📟 și validați apăsând pe 🔶 . Astfel fotografia dispare de pe listă. Pentru a abandona ștergerea, apăsați pe 鈽 în loc de 斗 .

65

Tasta 🕐 vă informează cu privire la funcțiile tastelor și la simbolurile utilizate pentru modul de afișare în curs.

Informațiile se citesc după cum urmează:

Figura 110 : Ecranul paginii de ajutor pentru modul puterilor și energiilor, pagina 2

Software-ul pentru exportul datelor PAT2 (Power Analyser Transfer 2), furnizat împreună cu aparatul, permite transferarea datelor înregistrate de aparat pe un PC.

Pentru a-l instala, plasați CD-ul în cititorul de CD-uri al PC-ului, apoi urmăriți instrucțiunile de pe ecran.

În sfârșit, conectați aparatul la PC, folosind cablul USB furnizat și scoțând capacul care protejează priza USB a aparatului.

Puneți în funcțiune aparatul, apăsând pe tasta 🍉 și așteptați ca PC-ul să-l detecteze.

Software-ul de transfer PAT2 definește automat viteza de comunicare dintre PC și aparat.

Observație: Toate mărimile înregistrate în aparat pot fi transferate pe PC, prin USB, cu software-ul PAT2. Prin transfer nu se șterg datele înregistrate, decât dacă utilizatorul solicită explicit aceasta.

Datele stocate pe cardul de memorie pot fi și citite pe un PC, prin intermediul unui cititor de carduri SD, cu software-ul PAT2. Pentru a scoate cardul de memorie, consultați §17.5.

Pentru a utiliza software-ul pentru exportul datelor, consultați asistența inclusă în el sau instrucțiunile sale de funcționare.

14.1. CONDIȚII PRIVIND MEDIUL

Condițiile privind temperatura și umiditatea mediului ambiant sunt prezentate în graficul următor:

Atenție: La peste 40°C, aparatul trebuie utilizat numai pe baterie SAU pe blocul de rețea. Utilizarea aparatului simultan pe baterie ȘI pe blocul de rețea externă este interzisă.

Altitudine : Utilizare < 2 000 m Depozitare < 10 000 m

Grad de poluare: 2.

Utilizare în interior.

14.2. CARACTERISTICI MECANICE

Dimensiuni (L x P x H)200 mm x 250 mm x 70 mmMasăaproximativ 2 kgDimensiune ecran118 mm x 90 mm, diagonala 148 mm

Indice de protecție

- IP53 conform EN60529, când aparatul este pe suportul său, fără niciun cablu conectat, cu jack-ul prizei ascunse și capacul prizei USB în poziția închisă.
- IP20 la nivelul bornelor de măsurare.
- IK08 conform EN 62262.

Testare la cădere 1 m conform IEC 61010-1

14.3. CATEGORII DE SUPRATENSIUNE CONFORM IEC 61010-1

Aparatul este conform IEC 61010-1 600 V categoria a IV-a sau 1.000 V categoria a III-a.

- prin utilizarea AmpFLEX®, MiniFLEX și a cleștilor C193, ansamblul "aparat + senzor de curent" este menținut la 600 V categoria a IV-a sau la 1.000 V categoria a III-a.
- prin utilizarea cleştilor PAC93, J93, MN93, MN93A şi E3N, ansamblul "aparat + senzor de curent" este declasat la 300 V categoria a IV-a sau 600 V categoria a III-a.
- prin utilizarea cutiei adaptoare de 5 A, ansamblul "aparat + senzor de curent" este declasat la 150 V categoria a IV-a sau 300 V categoria a III-a.

Izolație dublă între intrări/ieșiri și pământ.

Izolație dublă între intrările de tensiune, alimentare și celelalte intrări/ieșiri.

14.4. COMPATIBILITATEA ELECTROMAGNETICĂ (CEM)

Aparatul este conform standardului IEC 61326-1.

Conform standardului EN55011, aparatul este, în ceea ce privește emisiile electromagnetice, un aparat din grupa 1, clasa A. Aparatele din clasa A sunt destinate utilizării în medii industriale. Pot surveni dificultăți potențiale în asigurarea compatibilității electromagnetice în alte medii, datorită perturbațiilor produse prin conducție și radiație.

Conform standardului IEC 61326-1, în ceea ce privește imunitatea la câmpurile de frecvență radio, aparatul este echipat pentru utilizarea în amplasamente industriale.

Pentru senzorii AmpFLEX® și MiniFLEX :

- O influență (absolută) de 2% poate fi observată la măsurarea THD a curentului în prezența unui câmp electric radiat.
- O influență de 0,5 A poate fi observată la măsurarea curentului eficace în prezența frecvențelor radio transmise prin conducție.
- O influență de 1 A poate fi observată la măsurarea curentului eficace în prezența unui câmp magnetic.

14.5. ALIMENTARE

14.5.1. ALIMENTAREA DE LA REȚEA

Este vorba de un bloc de alimentare de la rețeaua externă de 600 V_{RMS} categoria a IV-a sau 1.000 V_{RMS} categoria a III-a.

Domeniul de utilizare: 230 V ± 10% la 50 Hz și 120 V ± 10% la 60 Hz.

Puterea de intrare maximă: 65 VA.

14.5.2. ALIMENTAREA DE LA BATERIE

Alimentarea aparatului se face de la un pachet de baterii de 9,6 V 4.000 mAh, format din 8 elemente NiMh reîncărcabile.

Durata de viață	Minimum 300 cicluri de reîncărcare-descărcare.			
Curent de încărcare	1 A.			
Timp de încărcare	Aproximativ 5 ore.			
Temp. de utilizare	[0 °C ; 50 °C].			
Temp. de reîncărcare	[10 °C ; 40 °C].			
Temp. de depozitare	Depozitare \leq 30 zile: [-20 °C ; 50 °C].			
	Depozitare între 30 și 90 zile: [-20 °C ; 40 °C].			
	Depozitare între 90 zile și 1 an: [-20 °C ; 30 °C].			

În cazul nefolosirii prelungite a aparatului, scoateți bateria din acesta (vezi § 17.3).

14.5.3. CONSUMUL

Consumul tipic al aparatului conectat la rețea (mA)	Baterie în curs de încărcare	Baterie încărcată
Puterea activă (W)	17	6
Puterea aparentă (VA)	30	14
Curent eficace (mA)	130	60

14.5.4. AUTONOMIE

Autonomia este de aproximativ 10 ore, când bateria este complet încărcată, iar ecranul este aprins. Dacă ecranul este stins (pentru a economisi energia bateriei), atunci autonomia este mai mare de 15 ore.

14.5.5. AFIŞAJ

Afișajul este de tip LCD cu matrice activă (TFT), cu caracteristicile următoare:

- diagonala de 5,7"
- rezoluție de 320x240 pixeli (1/4 pentru VGA)
- color
- Iuminozitate minimă de 210 cd/m² și tipică de 300 cd/m²
- timp de răspuns între 10 și 25 ms
- unghi de vizualizare de 80° în toate direcțiile
- redare excelentă de la 0 la 50°C

15.1. CONDIȚII DE REFERINȚĂ

Acest tabel prezintă condițiile de referință ale mărimilor, care se utilizează implicit în caracteristicile date în § 15.3.4.

Mărimea care influențează	Condiții de referință
Temperatura camerei	23 ± 3 °C
Nivelul de umiditate (umiditate relativă)	[45 %; 75 %]
Presiunea atmosferică	[860 hPa ; 1060 hPa]
Tensiunea simplă	[50 Vrms ; 1000 Vrms] fără c.c. (< 0,5 %)
Tensiunea de intrare a circuitului de curent standard (senzori de curent de orice tip în afară de <i>FLEX</i>)	[30 mVRMS ; 1 VRMS] fără c.c. (< 0,5 %) ■ $A_{nom}^{(1)} \Leftrightarrow 1$ VRMS ■ $3 \times A_{nom}^{(1)} \div 100 \Leftrightarrow 30$ mVRMS
Tensiunea de intrare a circuitului de curent Rogowski neamp- lificată (senzori de curent de tip <i>FLEX</i>)	[11,73 mVrмs ; 391 mVrмs] fără c.c. (< 0,5 %) ■ 10 kArms ⇔ 391 mVrмs la 50 Hz ■ 300 Arms ⇔ 11,73 mVrms la 50 Hz
Tensiunea de intrare a circuitului de curent Rogowski amplificată (senzori de curent de tip <i>FLEX</i>)	[117,3 μVRMS ; 3,91 mVRMS] fără c.c. (< 0,5 %) ■ 100 ARMS ⇔ 3,91 mVRMS la 50 Hz ■ 3 ARMS ⇔ 117,3 μVRMS la 50 Hz
Frecvența rețelei electrice	50 Hz ± 0,1 Hz și 60 Hz ± 0,1 Hz
Defazaj	0° (putere și energie active) 90° (putere și energie reactive)
Armonice	< 0,1 %
Dezechilibru de tensiune	< 10 %
Divizor de tensiune	1 (unitar)
Divizor de curent	1 (unitar)
Tensiuni	măsurate (necalculate)
Senzori de curent	reali (nesimulați)
Alimentare	Numai baterie
Câmp electric	 < 1 V.m⁻¹ pentru [80 MHz ; 1 GHz] ≤ 0,3 V.m⁻¹ pentru [1 GHz ; 2 GHz] ≤ 0,1 V.m⁻¹ pentru [2 GHz ; 2,7 GHz]
Câmp magnetic	< 40 A.m ⁻¹ c.c. (câmpul magnetic terestru)

(1) Valorile $\rm A_{\rm nom}$ sunt prezentate în tabelul de mai jos.

15.2. CURENTUL NOMINAL ÎN FUNCȚIE DE SENZOR

Senzor de curent (fără <i>FLEX</i>)	Curent nominal eficace (A _{nom}) [A]	Limita inferioară a domeniului de referință (3 × A _{nom} ÷ 100) [A]
Clește J93	3500	105
Clește C193	1000	30
Clește PAC93	1000	30
Clește MN93	200	6
Clește MN93A (100 A)	100	3
Clește E3N (10 mV/A)	100	3
Clește E3N (100 mV/A)	10	0,3
Clește MN93A (5 A)	5	0,15
Adaptor 5 A	5	0,15
Adaptor Essailec [®]	5	0,15

15.3. CARACTERISTICI ELECTRICE

15.3.1. CARACTERISTICILE INTRĂRII DE TENSIUNE

Domeniul de utilizare:	0 VRMS - 1000 VRMS c.a.+c.c. fază-nul 0 VRMS - 2000 VRMS c.a.+c.c. fază-fază (cu condiția să se respecte 1.000 V _{RMS} la categoria a III-a în raport cu pământul)
Impedanță de intrare:	1195 kΩ (între fază și nul)
Suprasarcină admisibilă:	1200 VRMS în permanență 2000 VRMS timp de o secundă.

15.3.2. CARACTERISTICILE INTRĂRII DE CURENT

Domeniu de funcționare:	[0 V ; 1 V]
Impedanță de intrare:	1 MΩ.
Suprasarcină admisibilă:	1,7 VRMS în permanență.

Senzorii de curent de tip *FLEX* (Amp*FLEX*® Mini*FLEX*) determină comutarea intrării de curent pe un montaj integrator (lanţ Rogowski amplificat sau neamplificat) capabil să interpreteze semnalele furnizate de senzorii cu același nume. În acest caz, impedanţa de intrare este adusă la 12,4 kΩ.

15.3.3. BANDA DE TRECERE

Canale de măsurare: 256 puncte per perioadă, adică:

- Pentru 50 Hz : 6,4 kHz (256 × 50 ÷ 2).
- Pentru 60 Hz : 7,68 kHz (256 × 60 ÷ 2).

Banda de trecere analogică la -3 dB : 76 kHz.
15.3.4. CARACTERISTICILE APARATULUI SINGUR (FĂRĂ SENZOR DE CURENT)

Mărimi referitoare la curenți și tensiuni

Mărimea		Plaja de măsur (cu divizo	are fără divizor or unitar)	Rezoluția afișajului	Eroarea maximă	
		Minimum	Maximum	(cu divizor unitar)	IIIIIIISeca	
	Frecvență	40 Hz	70 Hz	10 mHz	±10 mHz	
Tensiune	simplă	21/		100 mV V < 1.000 V	±(0,5 % + 200 mV)	
	Simpla	2 V	1.000 V V	1 V V ≥ 1.000 V	±(0,5 % + 1 V)	
RMS ⁽⁵⁾	compusă	2 V	2 000 V (2)	100 mV U < 1.000 V	±(0,5 % + 200 mV)	
	compusa	2 V	2.000 V 44	1 V U ≥ 1.000 V	±(0,5 % + 1 V)	
	simnlă	2 \/	1 200 \/ ⁽³⁾	100 mV V < 1.000 V	±(1 % + 500 mV)	
Tensiune continuă (c.c.) ⁽⁶⁾	ыпра	2 V	1.200 V V	$\begin{array}{c} 1 \text{ V} \\ \text{V} \geq 1.000 \text{ V} \end{array}$	±(1 % + 1 V)	
	compusă	2 V	2.400 V ⁽³⁾	100 mV U < 1.000 V	±(1 % + 500 mV)	
				1 V U ≥ 1.000 V	±(1 % + 1 V)	
	simplă	2 V	1.000 V ⁽¹⁾	100 mV V < 1.000 V	+(0.9.9% + 1.)/)	
Tensiune				1 V V ≥ 1.000 V	1(0,0 % 1 1 1)	
eficace ½	compusă	2 V	2.000 V (2)	100 mV U < 1.000 V	±(0,8 % + 1 V)	
				1 V U ≥ 1.000 V		
	aimală	2)/		100 mV V < 1.000 V		
Tensiune	simpia	2 V	1.414 V ^(*)	1 V V ≥ 1.000 V	±(3 % + 2 V)	
(peak)		2)/		100 mV U < 1.000 V		
	compusa	2 V	2.828 V (*)	1 V U ≥ 1.000 V	$\pm(3\% + 2V)$	
Severitatea scânteierii pe termen scurt (PST)		0	12	0,01	Vezi tabelul corespunzător	
Factor de vâr	f (CF)	,	0.00	0.01	±(1 % + 5 pct) CF < 4	
(tensiune și curent)		ĩ	୫,୫୫	0,01	$\begin{array}{l} \pm (5 \ \% + 2 \ \text{pct}) \\ \text{CF} \ \geq 4 \end{array}$	

(1) La 1.000 VRMS categoria a III-a, cu condiția ca tensiunile dintre fiecare bornă și pământ să nu depășească 1.000 VRMS.

(2) La bifazat (faze în opoziție) – aceeași observație ca pentru (1).

(3) Limitarea intrărilor de tensiune.

(4) 1000 x $\sqrt{2} \approx$ 1414; 2000 x $\sqrt{2} \approx$ 2828;

(5) Valoarea eficace totală și valoarea eficace a fundamentalei

(6) Componenta armonică a c.c. (n=0)

Mărimea		Plaja de măsura (cu divizo	are fără divizor or unitar)	Rezoluția afișajului	Eroarea maximă	
		Minimum	Maximum	(cu divizor unitar)	Intrinseca	
	Clește J93	3 A	3.500 A	1 A	±(0,5 % + 1 A)	
	Clește C193	1 Δ	1 000 A	100 mA A < 1.000 A	±(0,5 % + 200 mA)	
Curent RMS ⁽²⁾	Clește PAC93	17	1.00077	1 A A≥ 1.000 A	±(0,5 % + 1 A)	
	Clește MN93	200 mA 200 A 100 mA		±(0,5 % + 200 mA)		
	Clește E3N (10 mV/A)	100 mA	100 Δ	10 mA A < 100 A	±(0,5 % + 20 mA)	
	Clește MN93A (100 A)	100 1114	100 A	100 mA A ≥ 100 A	±(0,5 % + 100 mA)	
	Cleste E3N (100 mV/A)	10 mA	10 A	1 mA A < 10 A	±(0,5 % + 2 mA)	
			10 A	10 mA A ≥ 10 A	±(0,5 % + 10 mA)	
	Clește MN93A (5 A) Adaptor 5 A Adaptor Essailec®	5 mA	5 A	1 mA	±(0,5 % + 2 mA)	
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (10 kA)	10 A	10 kA	1 A A < 10 kA	±(0,5 % + 3 A)	
				10 A A ≥ 10 kA		
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (6500 A)	10 A	6.500 A	100 mA A < 1.000 A	±(0,5 % + 3 A)	
				1 A A≥ 1.000 A		
	Amp <i>FLEX®</i> A193	100 mA	100 A	10 mA A < 100 A	$\pm (0.5.\% \pm 20.mA)$	
	(100 A)			100 mA A ≥ 100 A	±(0,5 % + 30 mA)	
	Clește J93	3 A	5.000 A	1A	±(1 % + 1 A)	
	Cleste PAC03	1 Δ	1 300 Δ ⁽¹⁾	100 mA A < 1000 A	+(1 % + 1 Δ)	
			1.300 A V	1 A A ≥ 1000 A	±(1 % + 1 A)	
Curent con-	Cleste E3N (10 m)//A)	100 mA	100 A (1)	10 mA A < 100 A	+(1% + 100 mA)	
			100 A ''	100 mA A ≥ 100 A	±(1 /0 · 100 mA)	
	Cleste E3N (100 mV/A)	10 mA	1Ω Δ (1)	1 mA A < 10 A	+(1 % + 10 mΔ)	
				$\begin{array}{c} 10 \text{ mA} \\ \text{A} \geq 10 \text{ A} \end{array}$	±(1 % + 10 mA)	

(1) Limitarea cleştilor PAC93 şi E3N
(2) Valoarea eficace totală şi valoarea eficace a fundamentalei
(3) Componenta armonică a c.c. (n = 0)

Mărimea		Plaja de măsurare fără divizor (cu divizor unitar)		Rezoluția afișajului	Eroarea maximă intrinsecă
		Minimum	Maximum	(cu divizor unitar)	
	Clește J93	1 A	3.500 A	1 A	±(1 % + 1 A)
	Clește C193 Clește PAC93	1 A	1.000 A	100 mA A < 1.000 A 1 A A ≥ 1.000 A	±(1 % + 1 A)
	Cleste MN93	200 mA	200 A	100 mA	±(1 % + 1 A)
	, Clește E3N (10 mV/A) Clește MN93A (100 A)	100 mA	100 A	10 mA A < 100 A 100 mA A ≥ 100 A	±(1 % + 100 mA)
Quant	Clește E3N (100 mV/A)	10 mA	10 A	1 mA A < 10 A 10 mA A > 10 A	±(1 % + 10 mA)
eficace ½	Clește MN93A (5 A) Adaptor 5 A Adaptor Essailec [®]	5 mA	5 A	1 mA	±(1 % + 10 mA)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (10 kA)	10 A	10 kA	1 A A < 10 kA 10 A A ≥ 10 kA	±(2,5 % + 5 A)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (6500 A)	10 A	6.500 A	100 mA A < 1.000 A 1 A A ≥ 1.000 A	±(2,5 % + 5 A)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (100 A)	100 mA	100 A	10 mA A < 100 A 100 mA A ≥ 100 A	±(2,5 % + 200 mA)
	Clește J93	1 A	4.950 A (1)	1 A	±(1 % + 2 A)
	Clește C193 Clește PAC93	1 A	1.414 A ⁽¹⁾	1 A A < 1.000 A 1 A A ≥ 1.000 A	±(1 % + 2 A)
	Clește MN93	200 mA	282,8 A ⁽¹⁾	100 mA	±(1 % + 2 A)
	Clește E3N (10 mV/A) Clește MN93A (100 A)	100 mA	141,4 A ⁽¹⁾	10 mA A < 100 A 100 mA A ≥ 100 A	±(1 % + 200 mA)
Curont do	Clește E3N (100 mV/A)	10 mA	14,14 A (1)	1 mA A < 10 A 10 mA A ≥ 10 A	±(1 % + 20 mA)
vârf (PK)	Clește MN93A (5 A) Adaptor 5 A Adaptor Essailec®	5 mA	7,071 A ⁽¹⁾	1 mA	±(1 % + 20 mA)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (10 kA)	10 A	14,14 kA (1)	1 A A < 10 kA 10 A A ≥ 10 kA	±(3 % + 5 A)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (6500 A)	10 A	9192 kA ⁽¹⁾	100 mA A < 1.000 A 1 A A ≥ 1.000 A	±(3 % + 5 A)
	Amp <i>FLEX</i> ® A193 Mini <i>FLEX</i> MA193 (100 A)	100 mA	141,4 A ⁽¹⁾	10 mA A < 100 A 100 mA A ≥ 100 A	±(3 % + 600 mA)

(1) $3500 \times \sqrt{2} \approx 4950$; $1000 \times \sqrt{2} \approx 1414$; $200 \times \sqrt{2} \approx 282,8$; $100 \times \sqrt{2} \approx 141,4$; $10 \times \sqrt{2} \approx 14,14$; $10000 \times \sqrt{2} \approx 14140$; $6500 \times \sqrt{2} \approx 9192$;

Mărimi referitoare la puteri și energii

Mărimea		Plaja de măsı (cu div	urare fără divizor /izor unit)	Rezoluția afișajului	Eroarea maximă	
		Minimum	Maximum	(cu divizor unitar)	intrinseca	
	Fără <i>FL FX</i>				$\begin{array}{c} \pm (1 \ \%) \\ \cos \Phi \geq 0.8 \end{array}$	
Putere activă		10 mW ⁽³⁾	10 MW (4)	4 cifre maximum ⁽⁵⁾	$\begin{array}{c} \pm (1.5 \ \% + 10 \ \text{pct}) \\ 0.2 \leq \cos \Phi < 0.8 \end{array}$	
	Amp <i>FLEX</i> ®				$\begin{array}{c} \pm (1 \ \%) \\ \cos \Phi \geq 0.8 \end{array}$	
	Mini <i>FLEX</i>				$\begin{array}{c} \pm (1,5 \ \% + 10 \ \text{pct}) \\ 0,5 \leq \cos \Phi < 0,8 \end{array}$	
	Fără <i>FL FX</i>				$\begin{array}{c} \pm (1 \ \%) \\ \sin \Phi \geq 0.5 \end{array}$	
Putere reacti- vă (Q ₁) ⁽²⁾		10 myar ⁽³⁾	10 Myar ⁽⁴⁾	4 cifre maximum ⁽⁵⁾	\pm (1,5 % + 10 pct) 0,2 \leq sin Φ < 0,5	
și neactivă (N)	Amp <i>FLEX</i> ®	io invai		+ one maximum	$\pm (1,5 \%)$ sin $\Phi \ge 0,5$	
	Mini <i>FLEX</i>				$\pm (2,5 \% + 20 \text{ pct})$ $0,2 \le \sin \Phi < 0,5$	
					$\begin{array}{c} \pm (4 \ \% + 20 \ pct) \\ \text{dacă} \ \forall \ n \geq 1, \ \tau_n \leq (100 \ \div \ n) \ [\%] \end{array}$	
					sau	
Putere deformantă (D) (7)		10 mvar (s)	10 Mvar (4)	4 ciffe maximum (3)	$\pm (2 \% + (n_{max} \times 0,5 \%) + 100 \text{ pct})$ THD _A $\leq 20 \% \text{f}$	
					±(2 % +(n _{max} × 0,7 %) + 10 pct) THD _A > 20 %f	
Putere aparen	tă (S)	10 mVA ⁽³⁾	10 MVA (4)	4 cifre maximum (5)	±(1 %)	
Factor de pute	ere (PF)	-1	1	0,001	$\begin{array}{c} \pm (1,5 \ \%) \\ \cos \ \Phi \geq 0,5 \end{array}$	
					$\begin{array}{c} \pm(1,5 \ \% + \ 10 \ \text{pct}) \\ 0,2 \leq \cos \Phi < 0,5 \end{array}$	
	Fără <i>FLEX</i>		1 m\//h 0 000 000 M\//h (⁶)	7 cifre maximum ⁽⁵⁾	$\begin{array}{c} \pm (1 \ \%) \\ \cos \Phi \geq 0.8 \end{array}$	
Energie					$\pm(1,5 \%)$ 0,2 $\leq \cos \Phi < 0,8$	
activă (Ph) (1)	Amp <i>FLEX</i> ®	(Ph) ⁽¹⁾ Amp <i>FLEX</i> ®		9 999 999 MWWII (*)	7 chre maximum 97	$\begin{array}{c} \pm (1 \ \%) \\ \cos \Phi \geq 0.8 \end{array}$
	Mini <i>FLEX</i>				$\begin{array}{c} \pm(1,5\ \%) \\ 0,5 \leq \cos \Phi < 0,8 \end{array}$	
	Fără <i>ELEY</i>				$\begin{array}{c} \pm (1 \ \%) \\ \sin \Phi \geq 0,5 \end{array}$	
Energie reactivă		1 myarh	0 000 000 Myarh ⁽⁶⁾	7 cifre maximum ⁽⁵⁾	$\pm (1,5 \%)$ 0,2 $\leq \sin \Phi < 0,5$	
(Q ₁ n) ⁽²⁾ și neactivă (N) ⁽²⁾	Amp <i>FLEX</i> ®	Thivain			$\begin{array}{c} \pm(1,5~\%)\\ \sin~\Phi\geq0,5 \end{array}$	
	Mini <i>FLEX</i>				$\pm (2,5 \%)$ 0,2 $\leq \sin \Phi < 0,5$	
Eperaio dofor	mantă (Dh)	1 myorb	0 000 000 Muarh (6)	7 cifre maximum (5)	±(5,5 %) THD _A ≤ 20 %f	
			5 555 555 IVIVAIII (6)		±(1,5 %) THD _A > 20 %f	
Energie aparentă (Sh)		1 mVAh	9 999 999 MVAh (6)	7 cifre maximum (5)	+(1 %)	

(1) Erorile de măsurare date pentru măsurătorile de putere și energie activă sunt maxime pentru $|\cos \Phi| = 1$ și tipice pentru celelalte defazaje. (2) Erorile de măsurare date pentru măsurătorile de putere și energie reactivă sunt maxime pentru $|\sin \Phi| = 1$ și tipice pentru celelalte defazaje.

(3) Cu cleşte MN93A (5 A) adaptor de 5 A sau adaptor Essailec[®].
 (4) Cu Amp*FLEX*® sau Mini*FLEX* şi pentru conectarea monofazată cu 2 fire (tensiune simplă).

(5) Rezoluția depinde de senzorul de curent utilizat și de valoarea de afișat.

(6) Energia corespunde la peste 114 ani de putere asociată maximă (divizoare unitare).

(7) n_{max} este rangul maxim pentru care nivelul armonic este nenul.

Mărimi asociate puterilor

Mărimoo	Plaja de	e măsurare	Bezelutie oficeiului	Eroarea maximă	
Marimea	Minimum	Maximum	Rezoluția alișajului	intrinsecă	
Defazaje fundamentale	-179°	180°	1°	±2°	
$\cos \Phi$ (DPF)	-1	1	0,001	\pm 1° pe Φ \pm 5 pct pe cos Φ	
tα Φ.	22 77 (1)	22 77 (1)	0,001 tg Φ < 10	14º ma A	
ιg Φ	-32,77 (7	32,11 (*)	0,01 tg Φ ≥ 10	±ιρεΦ	
Dezeebilibru de tensiune (LINR)	0.9/	100.%	0.1.%	±3 pct UNB ≤ 10%	
	0 %	100 %	U, I 70	±10 pct UNB > 10%	
Dezechilibru de curent (UNB)	0 %	100 %	0,1 %	±10 pct	

(1)|tg Φ | = 32,767 corespunde la Φ = ±88,25° + k × 180° (unde k este un număr întreg natural)

Mărimi privind descompunerea spectrală a semnalelor

Mărimaa	Plaja de i	măsurare	Depatutia oficiului	Eroarea maximă
Marimea	Minimum	Maximum	Rezoluția afișajului	intrinsecă
Nivelul armonic al tensiunii (τ_n)	0 %	1.500 %f 100 %r	$ \begin{array}{c} 0,1 \% \\ \tau_n < 1.000 \% \\ 1 \% \\ \tau_n \ge 1000 \% \end{array} $	±(2,5 % + 5 pct)
Nivelul armonic al curentului (τ _n) (fără <i>FLEX</i>)	0 %	1.500 %f 100 %r	0,1 % τ _n < 1.000 %	$\pm (2 \% + (n \times 0.2 \%) + 10 \text{ pct})$ $n \le 25$ $\pm (2 \% \pm (n \times 0.6 \%) \pm 5 \text{ pct})$
			$\tau_n \ge 1.000 \%$	n > 25
Nivelul armonic al curentului (τ_n)	0 %	1.500 %f	0,1 % τ _n < 1.000 %	$\pm (2 \% + (n \times 0.3 \%) + 5 \text{ pct})$ n ≤ 25
		100 %r	1% $\tau_n \ge 1.000\%$	±(2 % + (n × 0,6 %) + 5 pct) n > 25
Distorsiunea armonică totală (THD) (în raport cu fundamentala) a tensiunii	0 %	999,9 %	0,1 %	±(2,5 % + 5 pct)
				$\begin{array}{c} \pm (2,5 \% + 5 pct) \\ \text{dacă} \forall n \geq 1, \tau_{_{n}} \leq (100 \div n) [\%] \end{array}$
Distorsiunea armonică totală (THD) (în				sau
raport cu fundamentala) a curentului (fără <i>FLEX</i>)	0 %	999,9 %	0,1 %	$\pm (2 \% + (n_{max} \times 0.2 \%) + 5 \text{ pct})$ $n_{max} \le 25$
				$\pm (2 \% + (n_{max} \times 0.5 \%) + 5 \text{ pct})$ $n_{max} > 25$
				$\begin{array}{c} \pm (2,5 \ \% \ + \ 5 \ pct) \\ \text{dacă} \ \forall \ n \geq 1, \ \tau_n \leq (100 \ \div \ n^2) \ [\%] \end{array}$
Distorsiunea armonică totală (THD) (în	0 %	999,9 %	0,1 %	sau
raport cu fundamentala) a curentului (Amp <i>FLEX</i> [®] și Mini <i>FLEX</i>)				$\pm (2 \% + (n_{max} \times 0.3 \%) + 5 \text{ pct})$ $n_{max} \le 25$
				$\pm (2 \% + (n_{max} \times 0.6 \%) + 5 \text{ pct})$ $n_{max} > 25$
Distorsiunea armonică totală (THD) (în raport cu semnalul fără c.c.) a tensiunii	0 %	100 %	0,1 %	±(2,5 % + 5 pct)
				\pm (2,5 % + 5 pct) dacă ∀ n ≥ 1, τ _n ≤ (100 ÷ n) [%]
Distorsiunea armonică totală (THD) (în		100 %	0,1 %	sau
raport cu semnalul fără c.c.) a curentu- lui (fără <i>FLEX</i>)	0 %			$\pm (2 \% + (n_{max} \times 0,2 \%) + 5 \text{ pct})$ $n_{max} \le 25$
				$\pm (2 \% + (n_{max} \times 0.5 \%) + 5 \text{ pct})$ $n_{max} > 25$
				$\begin{array}{c} \pm (2,5 \ \% \ + \ 5 \ pct) \\ \text{dacă} \ \forall \ n \geq 1, \ \tau_n \leq (100 \ \div \ n^2) \ [\%] \end{array}$
Distorsiunea armonică totală (THD) (în				sau
raport cu semnalul fără c.c.) a curentu- lui (Amp $FLEX^{\$}$ și Mini $FLEX$)	0 %	100 %	0,1 %	$\pm (2 \% + (n_{max} \times 0,3 \%) + 5 \text{ pct})$ $n_{max} \le 25$
				$\pm (2 \% + (n_{max} \times 0,6 \%) + 5 \text{ pct})$ $n_{max} > 25$
		00.00	0.04	$\pm (5 \% + (n_{max} \times 0,4 \%) + 5 \text{ pct})$ $n_{max} \le 25$
	1	99,99	0,01	$\pm (10 \% + (n_{max} \times 0.7 \%) + 5 \text{ pct})$ $n_{max} > 25$
Easter K (EK)	4	99,99	0.01	$ \begin{array}{ c c c c c c c } \pm (5 \% + (n_{max} \times 0.4 \%) + 5 \text{ pct}) \\ \hline & n_{max} \le 25 \end{array} $
Faciul K (FK)			0,01	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Defazaje armonice (rang \geq 2)	-179°	180°	1°	±(1,5° + 1° x (n ÷ 12,5)

Notă: $\mathbf{n}_{_{\text{max}}}$ este rangul maxim pentru care nivelul armonic este nenul.

Mărimea		Plaja de măsurare (cu divizor unitar)		Rezoluția afișajului	Eroarea maximă	
		Minimum	Maximum	(cu divizor unitar)	Intrinseca	
	simplă	21/	1 000 V (1)	100 mV V < 1.000 V	+(2.5.% + 1.\/)	
Tensiune armonică	ыпра	2 V	1.000 V V	1 V V ≥ 1.000 V	±(2,5 /0 + 1 V)	
RMS (rang n ≥ 2)	compueă	2.1/	2 000 \/ (2)	100 mV U < 1.000 V	+(2.5.9/ + 1.1/)	
	compusa	2 V	2.000 V	1 V U ≥ 1.000 V	±(2,5 % + 1 V)	
	oimplă () (d)	2.1/	1 000 14 (1)	100 mV V < 1.000 V		
Tensiune	simpla (vu)	2 V	1.000 V 🖤	1 V V ≥ 1.000 V	±(2,5 % + 1 V)	
RMS		2)/		100 mV U < 1.000 V		
	compusa (Od)	2 V	2.000 V	1 V U ≥ 1.000 V	±(2,5 % + 1 V)	
	Clește J93	1 A	3.500 A	1 A	\pm (2 % + (n x 0,2%) + 1 A) n ≤ 25	
	Clește C193 Clește PAC93	1 A	1.000 A	100 mA A < 1.000 A	\pm (2 % + (n x 0,2%) + 1 A) n ≤ 25	
				1 A A ≥ 1.000 A	±(2 % + (n x 0,5%) + 1 A) n > 25	
	Clește MN93	200 mA	200 A	100	\pm (2 % + (n x 0,2%) + 1 A) n ≤ 25	
				100 1114	±(2 % + (n x 0,5%) + 1 A) n > 25	
	Clește E3N (10 mV/A) Clește MN93A (100 A)	100 mA	100 A	10 mA A < 100 A	±(2 % + (n x 0,2%) + 100 mA) n ≤ 25	
				100 mA A ≥ 100 A	±(2 % + (n x 0,5%) + 100 mA) n > 25	
Curent	Clește E3N	10 mA	10 A	1 mA A < 10 A	±(2 % + (n x 0,2%) + 10 mA) n ≤ 25	
armonic eficace	(100 mV/A)			10 mA A ≥ 10 A	±(2 % + (n x 0,5%) + 10 mA) n > 25	
(rang n ≥ 2)	Clește MN93A (5 A)	5 m (5.4	1 m 4	\pm (2 % + (n x 0,2%) + 10 mA) n \leq 25	
	Adaptor Essailec [®]	51114	34	T IIIA	±(2 % + (n x 0,5%) + 10 mA) n > 25	
	Amp <i>FLEX</i> [®] A193	10.4	10 10	1 A A < 10 kA	$\begin{array}{c} \pm (2 \ \% \ + \ (n \ x \ 0, 3 \%) \ + \ 1 \ A \ + \ (Af_{RMS}{}^{(3)} \ x \ 0, 1 \%)) \\ n \le 25 \end{array}$	
	(10 kA)	IUA	TU KA	10 A A ≥ 10 kA	$\pm (2 \% + (n \ge 0.6\%) + 1 A + (Af_{RMS}^{(3)} \ge 0.1\%))$ n > 25	
	Amp <i>FLEX</i> ® A193	10.4	6 E00 A	100 mA A < 1.000 A	$\begin{array}{c} \pm (2 \ \% \ + \ (n \ x \ 0, 3 \%) \ + \ 1 \ A \ + \ (Af_{RMS}{}^{(3)} \ x \ 0, 1 \%)) \\ n \le 25 \end{array}$	
	(6.500 A)	10 A	6.500 A	1 A A ≥ 1.000 A	$\pm (2 \% + (n \ge 0.6\%) + 1 A + (Af_{RMS}^{(3)} \ge 0.1\%))$ n > 25	
	Amp <i>FLEX</i> [®] A193	100 ~ ^	100.4	10 mA A < 100 A	\pm (2 % + (n x 0,2%) + 30 pct) n ≤ 25	
	(100 A)		100 A	100 mA A ≥ 100 A	±(2 % + (n x 0,5%) + 30 pct) n > 25	

La 1.000 VRMS categoria a III-a, cu condiția ca tensiunile dintre fiecare bornă și pământ să nu depășească 1.000 VRMS.
 La bifazat (faze în opoziție) – aceeași observație ca pentru (1).
 Valoarea eficace a fundamentalei.

Mărimea		Plaja de măsurare (cu divizor unitar)		Rezoluția afișajului	Eroarea maximă
		Minimum	Maximum		Intrinseca
	Clește J93	1 A	3.500 A	1 A	±((n _{max} x 0,4%) + 1 A)
	Clește C	1.0	1 000 4	100 mA A < 1.000 A	$1/(2) \rightarrow 0.40(1) + 1.0(1)$
	Clește PAC	IA	1.000 A	1 A A ≥ 1.000 A	$\pm((\Pi_{\max} \times 0,4\%) + 1A)$
	Clește MN93	200 mA	200 A	100 mA	±((n _{max} x 0,4%) + 1 A)
	Clește E3N (10 mV/A)	0.14	100 4	10 mA A < 100 A	1/(2 - 100 m)
Curent deformant eficace (Ad) ⁽¹⁾	Clește MN93A (100 A)	0, IA	100 A	100 mA A ≥ 100 A	$\pm((\Pi_{max} \times 0.4\%) + 100 \Pi A)$
	Clește E3N (100 mV/A)	10 mA	10 A	1 mA A < 10 A	·//m ··· 0.40/) · 40 m /)
				10 mA A ≥ 10 A	$\pm ((\Pi_{max} \times 0, 4\%) + 10 \text{ IIIA})$
	Clește MN93A (5 A) Adaptor 5 A Adaptor Essailec®	5 mA	5 A	1 mA	±((n _{max} x 0,4%) + 10 mA)
	Amp <i>FLEX</i> ® A193	10 A	10 kA	1 A A < 10 kA	+((n + y + 0.40)) + 1.4)
	(10 kA)			10 A A ≥ 10 kA	$\Xi((\Pi_{max} \times 0, 4\%) + T \Lambda)$
	AmpFLEX® A193	10.4	C 500 A	100 mA A < 1.000 A	
	(6.500 A)	10 A	6.500 A	1 A A≥ 1.000 A	$\pm((\Pi_{\max} X 0, 4\%) + T A)$
	AmpFLEX [®] A193	100 m 4	100 0	10 mA A < 100 A	$\pm (n - x 0.50) \pm 20.001$
	Mini <i>FLEX</i> MA193 (100 A)	100 mA	100 A	100 mA A ≥ 100 A	$\pm (\Pi_{max} \times 0, 5\%) + 50 \text{ pcl}$

(1) $n_{_{max}} \, este \, rangul \, maxim \, pentru \, care \, nivelul \, armonic \, este \, nenul.$

Severitatea scânteierii pe termen scurt

	Eroarea maximă intrinsecă a măsurării severității scânteierii pe termen scurt (PST)					
Variații dreptunghiulare pe minut (raport ciclic de 50%)	Bec de rețea d	e 120 V e 60 Hz	Bec de rețea d	e 230 V e 50 Hz		
1	PST ∈ [0,5 ; 4]	± 5%	PST ∈ [0,5 ; 4]	± 5%		
2	PST ∈ [0,5 ; 5]	± 5%	PST ∈ [0,5 ; 5]	± 5%		
7	PST ∈ [0,5 ; 7]	± 5%	PST ∈ [0,5 ; 8]	± 5%		
39	PST ∈ [0,5 ; 12]	± 5%	PST ∈ [0,5 ; 10]	± 5%		
110	PST ∈ [0,5 ; 12]	± 5%	PST ∈ [0,5 ; 10]	± 5%		
1.620	PST ∈ [0,25 ; 12]	± 15%	PST ∈ [0,25 ; 10]	± 15%		

Plaja divizoarelor de curent și tensiune

Divizor	Minimum	Maximum
Tensiune	<u>100</u> 1.000 x √3	<u>9 999 900 x √3</u> 0,1
Curent (1)	1	60 000 / 1

(1) Numai pentru cleștele MN93A (5 A), adaptorul de 5 A și adaptorul Essailec[®].

Plaja de măsurare după aplicarea divizoarelor

		Plaja de măsurare			
Mărimea		Minimum cu divizoare minime	Maximum cu divizoare maxime		
Tensiune eficace	simplă	120 mV	170 GV		
Şi eficace 1/2 eficace 1/2	compusă	120 mV	340 GV		
	simplă	120 mV	200 GV		
rensiune continua (c.c.)	compusă	120 mV	400 GV		
	simplă	160 mV	240 GV		
Tensiune de Vart (PK)	compusă	320 mV	480 GV		
Curent eficace și eficace ½		5 mA	300 kA		
Curent continuu (c.c.)		10 mA	5 kA		
Curent de vârf (PK)		7 mA	420 kA		
Putere activă (P)		600 μW	51 PW (2)		
Putere reactivă (Q ₁) neactivă (N) si deformantă (D)		600 µvar	51 Pvar (2)		
Putere aparentă (S)		600 µVA	51 PVA (2)		
Energie activă (Ph)		1 mWh	9 999 999 EWh (1)		
Energie reactivă (Q ₁ h) neactivă (Nh) și deformantă (Dh)		1 mvarh	9 999 999 Evarh ⁽¹⁾		
Energie aparentă (Sh)		1 mVAh	9 999 999 EVAh ⁽¹⁾		

(1) Energia corespunde la peste 22.000 ani de putere asociată maximă (divizoare maxime).(2) Valoarea maximă calculată pentru conectarea monofazată cu 2 fire (tensiune simplă).

15.3.5. CARACTERISTICILE SENZORILOR DE CURENT (DUPĂ LINIARIZARE)

Erorile senzorilor sunt compensate de o corecție tipică în interiorul aparatului. Această corecție tipică se face ca fază și ca amplitudine în funcție de tipul senzorului conectat (detectat automat) și de amplificarea solicitată a lanțului de achiziție a curentului.

Eroarea măsurătorilor în curent eficace și eroarea de fază corespund unor erori suplimentare (care trebuie adăugate la cele ale aparatului), date ca influențe asupra calculelor realizate de analizor (puteri, energii, factori de putere, tangente etc.).

Tip de senzor	Curent eficace (ARMS)	Eroare maximă la Arms	Eroare maximă la Φ
Amp <i>FLEX</i> ® A193	[10 A ; 100 A[±3 %	±1°
6.500 A / 10 kA	[100 A ; 10 kA]	±2 %	±0,5°
MiniFLEX MA193	[10 A ; 100 A[±3 %	±1°
6.500 A / 10 kA	[100 A ; 10 kA]	±2 %	±0,5°
Amp <i>FLEX[®]</i> A193 100 A	[100 mA ; 100 A]	±3 %	±1°
Mini <i>FLEX</i> MA193 100 A	[100 mA ; 100 A]	±3 %	±1°
	[3 A ; 50 A[-	-
	[50 A ; 100 A[±(2 % + 2,5 A)	±4°
Clește J93	[100 A ; 500 A[±(1,5 % + 2,5 A)	±2°
3.500 A	[500 A ; 2.000 A[±1 %	±1°
	[2.000 A ; 3.500 A]	±1 %	±1,5°
]3.500 A ; 5.000 A] DC	±1 %	-
	[1 A ; 10 A[±0,8 %	±1°
Clește C193	[10 A ; 100 A[±0,3 %	±0,5°
1.00071	[100 A ; 1.000 A]	±0,2 %	±0,3°
	[1 A ; 10 A[±(1,5 % + 1 A)	-
	[10 A ; 100 A[±(1,5 % + 1 A)	±2°
Clește PAC93	[100 A ; 200 A[±3 %	±1,5°
1.000 A	[200 A ; 800 A[±3 %	±1,5°
	[800 A ; 1.000 A[±5 %	±1,5°
]1.000 A ; 1.300 A] DC	±5 %	-
	[200 mA ; 500 mA[-	-
	[500 mA ; 10 A[±(3 % + 1 A)	-
Clește MN93	[10 A ; 40 A[±(2,5 % + 1 A)	±3°
	[40 A ; 100 A[±(2,5 % + 1 A)	±3°
	[100 A ; 200 A]	±(1 % + 1 A)	±2°
Clește MN93A	[100 mA ; 1 A[±(0,7 % + 2 mA)	±1,5°
100 A	[1 A ; 100 A]	±0,7 %	±0,7°
Clește E3N (10 mV/A)	[100 mA ; 40 A[±(2 % + 50 mA)	±0,5°
100A	[40 A ; 100 A]	±7,5 %	±0,5°
Clește E3N (100 mV/A) 10A	[10 mA ; 10 A]	±(1,5 % + 50 mA)	±1°
	[5 mA ; 50 mA[±(1 % + 100 μA)	±1,7°
Clește MN93A	[50 mA ; 500 mA[±1 %	±1°
	[500 mA ; 5 A]	±0,7 %	±1°
	[5 mA ; 50 mA[±(1 % + 1,5 mA)	±1°
Adaptor 5 A Adaptor Essailec®	[50 mA ; 1 A[±(0,5 % + 1 mA)	±0°
	[1 A ; 5 A]	± 0,5 %	±0°

Notă: În acest tabel nu se ține cont de posibila distorsiune a semnalului măsurat (THD), datorită limitărilor fizice ale senzorului de curent (saturația circuitului magnetic sau a celulei cu efect Hall). Clasa B conform standardului IEC 61000-4-30.

15.3.6. CONFORMITATEA APARATULUI

Aparatul și software-ul său de exploatare Power Analyzer Transfer 2 sunt conform clasei B din standardul IEC 61000-4-30 în ceea ce privește parametrii următori:

- Frecvența industrială,
- Amplitudinea tensiunii de alimentare,
- Scânteierea ("flicker"),
- Golurile tensiunii de alimentare,
- Supratensiunile temporare la frecvență industrială,
- Tăierile tensiunii de alimentare,
- Tensiunile tranzitorii,
- Dezechilibrul tensiunii de alimentare,
- Armonicele de tensiune.

Observație: Pentru a asigura această conformitate, este obligatoriu ca înregistrările tendinței (modul Tendință) să fie realizate cu:

- O perioadă de înregistrare de o secundă,
- Mărimile Vrms și Urms selectate,
- Mărimile V-h01 și U-h01 selectate.

15.3.7. INCERTITUDINILE ȘI PLAJELE DE MĂSURARE

Parametru		Plajă	Eroare de măsură	U _{din}	
Frecvență industrială		[42,5 Hz ; 69 Hz]	±10 mHz	[50 V ; 1.000 V]	
Amplitudinea tensiunii de alimentare		[50 V ; 1.000 V]	±1 % din U _{din}	[50 V ; 1.000 V]	
Scânteiere		[0,25 ; 12]	Vezi tabelele corespunzătoare	$\begin{array}{l} V \in \{120 \; V \; ; \; 230 \; V \} \\ U \in \{207 \; V \; ; \; 400 \; V \} \end{array}$	
Golurile tensiunii de	Tensiunea rezi- duală	[5 % din U _{din} ; U _{din}]	±2 % din U _{din}	[50 V ; 1.000 V]	
alimentare	Durata	[10 ms ; 65 535 zile]	80 ppm ±10 ms (maximum) 30 ppm ±10 ms (tipic)		
Supratensiuni tem- porare la frecvență industrială	Amplitudine maximă	[Udin ; 150 % din Udin]	±2 % din U _{din}	[50 V ; 1.000 V]	
	Durata	[10 ms ; 65 535 zile]	80 ppm ±10 ms (maximum) 30 ppm ±10 ms (tipic)		
Tăierile tensiunii de alimentare	Durata	[10 ms ; 65 535 zile]	80 ppm ±10 ms (maximum) 30 ppm ±10 ms (tipic)	[50 V ; 1.000 V]	
Dezechilibrul tensiunii de alimentare		[0 % ; 10 %]	±0,3 % adică ±3 pct	[50 V ; 1.000 V]	
Armonico do tonoiuno	Nivel	[0 % ; 1.500 %]	±(2,5 % + 5 pct)	[50 V ; 1.000 V]	
Armonice de tensiune	Tensiune	[2 V ; 1.000 V]	±(2,5 % + 1 V)		

15.3.8. EROAREA DE MĂSURARE A CEASULUI ÎN TIMP REAL

Eroarea de măsurare a ceasului în timp real este de maximum 80 ppm (aparat vechi de 3 ani, utilizat la o temperatură a mediului de 50°C). Pentru un aparat nou utilizat la 25°C, această eroare de măsurare nu depășește 30 ppm.

Acest paragraf prezintă formulele matematice utilizate pentru calcularea diverșilor parametri.

16.1. FORMULE MATEMATICE

16.1.1. FRECVENȚA REȚELEI ȘI EȘANTIONAREA

Eșantionarea este distribuită pe frecvența rețelei, pentru a obține 256 eșantioane per perioadă între 40 Hz și 70 Hz. Distribuirea este indispensabilă pentru numeroase calcule, printre care cele ale puterii reactive, puterii deformante, factorului de putere fundamental, dezechilibrului, precum și ale nivelelor și unghiurilor armonice.

Valoarea frecvenței instantanee este determinată analizând 8 treceri prin zero pozitive și consecutive pe semnalul considerat, după filtrarea digitală trece-jos și suprimarea digitală a componentei continue (adică 7 perioade filtrate). Măsurarea temporală precisă a punctului de trecere prin zero se realizează prin interpolarea liniară între două eșantioane.

Aparatul poate calcula o frecvență instantanee simultan pe fiecare dintre cele 3 faze de tensiune (simplă pentru sistemele de distribuire cu nul și compusă pentru sistemele de distribuire fără nul) sau de curent. Apoi alege una din două sau din trei, ca frecvență instantanee oficială.

Frecvența rețelei pe o secundă este media armonică a frecvențelor instantanee.

Achiziția semnalelor se realizează cu un convertizor pe 16 biți și (în cazul achiziției curenților) cu comutări dinamice ale amplificării.

16.1.2. MODUL FORMĂ DE UNDĂ

16.1.2.1. Valori eficace pe semiperioadă (fără nul)

Tensiunea simplă eficace pe semiperioada fazei (i+1), unde i \in [0 ; 2].

$$\operatorname{Vdem}[i] = \sqrt{\frac{1}{\operatorname{NechDemPer}}} \cdot \sum_{n=Z\acute{e}ro}^{(Z\acute{e}ro\ suivant)-1} V[i][n]^2}$$

Tensiunea compusă eficace pe semiperioada fazei (i+1), unde i \in [0 ; 2].

$$Udem[i] = \sqrt{\frac{1}{NechDemPer}} \cdot \sum_{n=Z\acute{e}ro}^{(Z\acute{e}ro\ suivant)-1} U[i][n]^2$$

Curentul eficace pe semiperioada fazei (i+1), unde i \in [0 ; 2].

$$\operatorname{Adem}[i] = \sqrt{\frac{1}{NechDemPer}} \cdot \sum_{n=Z\acute{e}ro}^{(Z\acute{e}ro\ suivant)-1} A[i][n]^2$$

Observații: aceste valori sunt calculate pentru fiecare semiperioadă, pentru a nu omite niciun defect.

Valoarea NechDemPer reprezintă numărul de eșantioane din semiperioadă.

16.1.2.2. Valori eficace minime și maxime pe semiperioadă (fără nul)

 $\begin{array}{l} \mbox{Tensiuni eficace simple maxime $$$$$$$$$$$$$$$$$ minime ale fazei (i+1), unde $i \in [0$; 2]$$. \\ \mbox{Vmax} [i] = max(Vdem[i]), \quad Vmin[i] = min(Vdem[i]) \end{array}$

 $\begin{array}{l} \mbox{Tensiuni eficace compuse maxime $$$$$$$$$$$$$$$$ minime ale fazei (i+1), unde $i \in [0$; 2]$$. Umax [i] = max(Udem[i]), Umin[i] = min(Udem[i]) \\ \end{array}$

 $\begin{array}{l} Curenți eficace maximi și minimi ai fazei (i+1), unde i \in [0 \ ; 2]. \\ Amax [i] = max(Adem[i]), \quad Amin[i] = min(Adem[i]) \end{array}$

Observație: Durata evaluării este lăsată liberă (reinițializare prin apăsarea de către utilizator a tastei 🛶 în modul 🔤 MAX-MIN).

16.1.2.3. Mărimi continue (inclusiv nulul, exceptând Vdc și Udc - reevaluare în fiecare secundă)

Tensiunea simplă continuă a fazei (i+1), unde i \in [0 ; 2]

$$\operatorname{Vdc}[i] = \frac{1}{\operatorname{NechSec}} \cdot \sum_{n=0}^{\operatorname{NechSec}^{-1}} V[i][n]$$

Tensiunea compusă continuă a fazei (i+1), unde i \in [0 ; 2]

$$\mathrm{Udc}[i] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[i][n]$$

Curentul continuu al fazei (i+1), unde i \in [0 ; 3] (i = 3 \Leftrightarrow curent de nul)

$$\operatorname{Adc}[i] = \frac{1}{\operatorname{NechSec}} \cdot \sum_{n=0}^{\operatorname{NechSec}-1} A[i][n]$$

Observație: Valoarea NechSec reprezintă numărul de eșantioane pe secundă.

16.1.2.4. Severitatea scânteierii pe termen scurt 10 min (fără nul)

Metodă inspirată din standardul IEC 61000-4-15.

Valorile de intrare sunt tensiunile eficace pe semiperioadă (simple pentru sistemele de distribuție cu nul, compuse pentru sistemele de distribuție fără nul). Blocurile 3 și 4 sunt realizate în mod digital. Clasificatorul blocului 5 cuprinde 128 nivele.

Valoarea PST[i] este actualizată la fiecare 10 minute (faza (i+1), unde \in [0 ; 2]).

Observație: Calcularea PST poate fi reinițializată prin apăsarea de către utilizator pe tasta → în modul Rezumat. Este important de subliniat că începutul intervalelor de 10 minute nu este neapărat aliniat la un multiplu de 10 minute al timpului universal coordonat (UTC).

16.1.2.5. Valori de vârf (inclusiv nulul, exceptând Vpp, Upp, Vpm și Upm - reevaluare la fiecare secundă)

 $\begin{array}{ll} \mbox{Valori de vârf pozitive și negative ale tensiunii simple a fazei (i+1), unde i \in [0 ; 2]. \\ \mbox{Vpp[i]} = max(V[i][n]), \qquad \mbox{Vpm[i]} = min(V[i][n]) \qquad n \in [0 ; N] \end{array}$

Valori de vârf pozitive și negative ale tensiunii compuse a fazei (i+1), unde i \in [0 ; 2]. Upp[i] = max(U[i][n]), Upm[i] = min(U[i][n]) n \in [0 ; N]

Valori de vârf pozitive și negative ale curentului fazei (i+1), unde i \in [0 ; 3] (i = 3 \Leftrightarrow nul). App[i] = max(A[i][n]), Apm[i] = min(A[i][n]) n \in [0 ; N]

Observație: Durata evaluării este lăsată liberă (reinițializare prin apăsarea de către utilizator a tastei 🛶 în modul 🔤 MAX-MIN).

16.1.2.6. Factori de vârf (inclusiv nulul, exceptând Vcf și Ucf - pe o secundă)

Factor de vârf al tensiunii simple a fazei (i+1), unde $i \in [0; 2]$.

$$\operatorname{Vcf}[i] = \frac{\max(|\operatorname{Vpp}[i]|, |\operatorname{Vpm}[i]|)}{\sqrt{\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} V[i][n]^2}}$$

Factor de vârf al tensiunii compuse a fazei (i+1), unde i \in [0 ; 2].

$$\operatorname{Ucf}[i] = \frac{\max(|\operatorname{Upp}[i]|, |\operatorname{Upm}[i]|)}{\sqrt{\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec^{-1}} U[i][n]^2}}$$

Factor de vârf al curentului fazei (i+1), unde i \in [0 ; 3] (i = 3 \Leftrightarrow nul).

$$\operatorname{Acf}[i] = \frac{\max(|\operatorname{App}[i]|, |\operatorname{Apm}[i]|)}{\sqrt{\frac{1}{\operatorname{NechSec}} \cdot \sum_{n=0}^{\operatorname{NechSec}-1} A[i][n]^2}}$$

Observație: Valoarea NechSec reprezintă numărul de eșantioane pe secundă. Durata de evaluare a valorilor de vârf este aici de o secundă.

16.1.2.7. Valori eficace (inclusiv nulul, exceptând Vrms și Urms - pe o secundă)

Tensiunea simplă eficace a fazei (i+1), unde i \in [0 ; 2].

$$\operatorname{Vrms}[i] = \sqrt{\frac{1}{NechSec}} \cdot \sum_{n=0}^{NechSec-1} V[i][n]^2$$

Tensiunea compusă eficace a fazei (i+1), unde i \in [0 ; 2].

$$\operatorname{Urms}[i] = \sqrt{\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[i][n]^2}$$

Curentul eficace al fazei (i+1), unde i \in [0 ; 3] (i = 3 \Leftrightarrow nul).

$$\operatorname{Arms}[i] = \sqrt{\frac{1}{NechSec}} \cdot \sum_{n=0}^{NechSec-1} A[i][n]^2$$

Observație: Valoarea NechSec reprezintă numărul de eșantioane pe secundă.

16.1.2.8. Nivelul dezechilibrului invers (conectare trifazată - pe o secundă)

Sunt calculate pornind de la valorile vectoriale eficace filtrate (pe o secundă) VFrms[i] și AFrms[i] pentru sistemele de distribuție cu nul, respectiv UFrms[i] și AFrms[i] pentru sistemele de distribuție fără nul. (Ideal, vectorii fundamentali ai semnalelor). Formulele utilizate fac apel la componentele simetrice Fortescue, rezultate din transformarea inversă cu aceeași denumire.

Observație: Acestea sunt operații vectoriale în notație complexă, unde $a = e^{j\frac{2\pi}{3}}$

Tensiunea simplă simetrică fundamentală directă (vector) într-un sistem de distribuție cu nul

 $Vrms_{+} = \frac{1}{3} (VFrms[0] + a \cdot VFrms[1] + a^{2} \cdot VFrms[2])$

Tensiunea simplă simetrică fundamentală inversă (vector) într-un sistem de distribuție cu nul

$$Vrms_{-} = \frac{1}{3}(VFrms[0] + a^{2} \cdot VFrms[1] + a \cdot VFrms[2])$$

Nivelul dezechilibrului invers al tensiunilor simple, într-un sistem de distribuție cu nul

$$Vunb = \frac{|Vrms_{-}|}{|Vrms_{+}|}$$

Observație: Sunt salvate mărimile următoare, cu nivelul dezechilibrului invers într-o înregistrare a tendințelor: Vns = |Vrms-| și Vps = |Vrms+| (respectiv modulele componentelor simetrice fundamentale inversă și directă).

Tensiunea compusă simetrică fundamentală directă (vector) într-un sistem de distribuție fără nul

$$Urms_{+} = \frac{1}{3}(UFrms[0] + a \cdot UFrms[1] + a^{2} \cdot UFrms[2])$$

Tensiunea compusă simetrică fundamentală inversă (vector) într-un sistem de distribuție fără nul

$$Urms_{-} = \frac{1}{3} (UFrms[0] + a^{2} \cdot UFrms[1] + a \cdot UFrms[2])$$

Nivelul dezechilibrului invers al tensiunilor compuse, într-un sistem de distribuție fără nul

 $\text{Uunb} = \frac{|\text{Urms}_-|}{|\text{Urms}_+|}$

Observație: Sunt salvate mărimile următoare, cu nivelul dezechilibrului invers într-o înregistrare a tendințelor: Uns = |Urms-| și Ups = |Urms+| (respectiv modulele componentelor simetrice fundamentale inversă și directă).

Curentul simetric fundamental direct (vector)

$$Arms_{+} = \frac{1}{3} (AFrms[0] + a \cdot AFrms[1] + a^{2} \cdot AFrms[2])$$

Curentul simetric fundamental invers (vector)

$$Arms_{-} = \frac{1}{3} (AFrms[0] + a^{2} \cdot AFrms[1] + a \cdot AFrms[2])$$

Nivelul dezechilibrului invers al curenților

 $Aunb = \frac{|Arms_{-}|}{|Arms_{+}|}$

Observație: Sunt salvate mărimile următoare, cu nivelul dezechilibrului invers într-o înregistrare a tendințelor: Ans = |Arms-| și Aps = |Arms+| (respectiv modulele componentelor simetrice fundamentale inversă și directă).

16.1.2.9. Valori eficace fundamentale (fără nul - pe o secundă)

Sunt calculate pornind de la valorile vectoriale (instantanee) filtrate. Un filtru digital compus din 6 filtre Butterworth trece-jos de ordinul 2, cu răspuns de tip impuls infinit și un filtru Butterworth trece-sus de ordinul 2, cu răspuns de tip impuls infinit permit extragerea componentelor fundamentale.

16.1.2.10. Valori fundamentale unghiulare (fără nul - pe o secundă)

Sunt calculate pornind de la valorile vectoriale (instantanee) filtrate. Un filtru digital compus din 6 filtre Butterworth trece-jos de ordinul 2, cu răspuns de tip impuls infinit și un filtru Butterworth trece-sus de ordinul 2, cu răspuns de tip impuls infinit permit extragerea componentelor fundamentale. Valorile unghiulare calculate sunt cele dintre:

- 2 tensiuni simple
- 2 curenți de linie
- 2 tensiuni compuse
- O tensiune simplă și un curent de linie (sisteme de distribuție cu nul)
- O tensiune compusă și un curent de linie (sisteme de distribuție bifazate cu 2 fire)

16.1.3. MODUL ARMONIC

16.1.3.1. FFT (fără nul - pe 4 perioade consecutive în fiecare secundă)

Sunt efectuate de FFT (16 biți) 1024 puncte, pe 4 perioade cu o fereastră dreptunghiulară (cf. IEC 61000-4-7). Pornind de la părțile reale b_k și imaginare a_k , se calculează nivelurile armonice pentru fiecare rang (j) și fiecare fază (i) Vharm[i][j], Uharm[i][j] și Aharm[i] [j] în raport cu fundamentala și unghiurile Vph[i][j], Uph[i][j] în raport cu fundamentala.

Observație: Calculele sunt realizate secvențial: {V1;A1} apoi {V2;A2} apoi {V3;A3} apoi {U1; U2} și în sfârșit {U3}. În cazul unei surse de distribuție bifazate cu 2 fire, cuplul {V1; A1} este înlocuit de cuplul {U1; A1}.

Nivelul în % în raport cu fundamentala [% f] $\Leftrightarrow \tau_k = \frac{c_k}{c_4} 100$

Nivelul în % în raport cu valoarea eficace totală [% r] $\Leftrightarrow \tau_k = \frac{c_k}{\sqrt{\sum_{m=0}^{950} C_{4m}^2}} 100$

Unghiul în raport cu fundamentala, în grade [°] $\Leftrightarrow \varphi_k = \arctan\left(\frac{a_k}{b_k}\right) - \varphi_4$

unde
$$\begin{cases} c_k = \left| b_k + \dot{\mu}_k \right| = \sqrt{a_k^2 + b_k^2} \\ b_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \cdot \sin\left(\frac{k\pi}{512}s + \varphi_k\right) \\ a_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \cdot \cos\left(\frac{k\pi}{512}s + \varphi_k\right) \\ c_0 = \frac{1}{1024} \sum_{s=0}^{1024} F_s \end{cases}$$

c_k este amplitudinea componentei rangului $m = \frac{k}{4}$ cu o frecvență $f_k = \frac{k}{4}f_4$.

 F_s este semnalul eșantionat al frecvenței fundamentale f_4 .

k este indexul razei spectrale (rangul componentei armonice este $m = \frac{k}{4}$).

Observație: Înmulțind nivelele armonice ale tensiunii simple cu cele ale curentului, se calculează nivelele armonice ale puterii. Scăzând unghiurile armonice ale tensiunii simple din cele ale curentului, se calculează unghiurile armonice ale puterii (VAharm[i][j] și VAph[i][j]). În cazul unei surse de distribuție bifazate cu 2 fire, tensiunea simplă V1 este înlocuită cu tensiunea compusă U1 și se obțin nivelele armonice ale puterii UAharm[0][j] și unghiurile armonice ale puterii UAph[0][j].

16.1.3.2. Distorsiuni armonice

Sunt calculate două valori globale, care indică mărimea relativă a armonicelor:

- THD ca proporție din fundamentală (notată și THD-F),
- THD ca proporție din valoarea totală RMS-AC (notată și THD-R) (numai pentru C.A 8333).

Nivelurile de distorsiune armonică totale ale fazei (i+1), unde i \in [0 ; 2] (THD-F)

$$Vthdf[i] = \frac{\sqrt{\sum_{n=2}^{\mathfrak{H}} Vharm[i][n]^2}}{Vharm[i][1]}, Uthdf[i] = \frac{\sqrt{\sum_{n=2}^{\mathfrak{H}} Uharm[i][n]^2}}{Uharm[i][1]}, Athdf[i] = \frac{\sqrt{\sum_{n=2}^{\mathfrak{H}} Aharm[i][n]^2}}{Aharm[i][1]}$$

Nivelurile de distorsiune armonică totale ale canalului (i+1), unde i ∈ [0 ; 2] (THD-R) (numai pentru C.A 8333).

$$\operatorname{Vthdr}[i] = \sqrt{\frac{\sum_{n=2}^{\mathfrak{d}} Vharm[i][n]^{2}}{\sum_{n=1}^{\mathfrak{d}} Vharm[i][n]^{2}}}, \operatorname{Uthdr}[i] = \sqrt{\frac{\sum_{n=2}^{\mathfrak{d}} Uharm[i][n]^{2}}{\sum_{n=1}^{\mathfrak{d}} Uharm[i][n]^{2}}}, \operatorname{Athdr}[i] = \sqrt{\frac{\sum_{n=2}^{\mathfrak{d}} Aharm[i][n]^{2}}{\sum_{n=1}^{\mathfrak{d}} Aharm[i][n]^{2}}}$$

THD ca proporție din valoarea RMS-AC (THD-R) se mai numește și factor de distorsiune (DF).

16.1.3.3. Factor de pierderi armonice (fără nul - pe 4 perioade consecutive în fiecare secun)

Factor de pierderi armonice al fazei (i+1), unde i \in [0 ; 2]

$$\operatorname{FHL}[i] = \frac{\sum_{n=1}^{n=0} n^2 \cdot Aharm[i][n]^2}{\sum_{n=1}^{n=50} Aharm[i][n]^2}$$

16.1.3.4. Factor K (fără nul - pe 4 perioade consecutive în fiecare secundă)

Factorul K al fazei (i+1), unde i \in [0 ; 2], e \in [0.05 ; 0.1] și q \in [1.5 ; 1.7]

FK [i] =
$$\sqrt{1 + \frac{e}{1 + e} \cdot \frac{\sum_{n=2}^{n=0} n^{q} \cdot Aharm[i][n]^{2}}{\sum_{n=1}^{n=50} Aharm[i][n]^{2}}}$$

16.1.3.5. Nivelul secvenței armonice (pe 3 x (4 perioade consecutive) în fiecare secundă)

Nivelul secvenței armonice negative

Aharm_{-} =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{7} Aharm[i][3j+2]}{Aharm[i][1]}$$

Sisteme trifazate cu nul

Vharm_ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Vharm[i][3j+2]}{Vharm[i][1]}$$

Sisteme trifazate fără nul

Uharm_ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{7} Uharm[i][3j+2]}{Uharm[i][1]}$$

Nivelul secvenței armonice nule

Aharm₀ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{7} Aharm[i][3j+3]}{Aharm[i][1]}$$

Sisteme trifazate cu nul

Vharm₀ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Vharm[i][3j+3]}{Vharm[i][1]}$$

Sisteme trifazate fără nul

Uharm₀ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Uharm[i][3j+3]}{Uharm[i][1]}$$

Nivelul secvenței armonice pozitive

Aharm₊ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Aharm[i][3j+4]}{Aharm[i][1]}$$

Sisteme trifazate cu nul

Vharm₊ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Vharm[i][3j+4]}{Vharm[i][1]}$$

7

Sisteme trifazate fără nul

Uharm₊ =
$$\frac{1}{3} \sum_{i=0}^{2} \frac{\sum_{j=0}^{i} Uharm[i][3j+4]}{Uharm[i][1]}$$

16.1.4. PUTEREA

Puteri fără nul - pe o secundă

16.1.4.1. Sistem de distribuție cu nul

Puterea activă a fazei (i+1), unde $i \in [0; 2]$.

$$\mathbf{P}[i] = \mathbf{W}[i] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} V[i][n] \cdot A[i][n]$$

 $\begin{array}{l} \mbox{Puterea aparentă a fazei (i+1), unde } i \in [0 \ ; \ 2]. \\ S[i] = VA[i] = Vrms[i]. \ Armsi] \end{array}$

Puterea reactivă a fazei (i+1), unde i \in [0; 2] (mărimi neactive descompuse).

$$Q_1[i] = \text{VARF}[i] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec} VF[i][n - \frac{NechPer}{4}] \cdot AF[i][n]$$

Puterea deformantă a fazei (i+1), unde i \in [0 ; 2] (mărimi neactive descompuse). $D[i] = V\overline{A}D[i] = \sqrt{S[i]^2 - P[i]^2 - Q_1[i]^2}$

Puterea neactivă a fazei (i+1), unde i \in [0 ;2] (mărimi neactive descompuse).

$$N[i] = VAR[i] = \sqrt{S[i]^2 - P[i]^2}$$

Putere activă totală P[3] = W[3] = P[0] + P[1] + P[2]

Putere aparentă totală S[3] = VA[3] = S[0] + S[1] + S[2]

Putere reactivă totală (mărimi neactive descompuse) $Q_1[3] = VARF[3] = Q_1[0] + Q_1[1] + Q_1[2]$

Putere deformantă totală (mărimi neactive descompuse)

$$D[3] = VAD[3] = \sqrt{S[3]^2 - P[3]^2 - Q_1[3]^2}$$

Putere neactivă totală (mărimi neactive nedescompuse)

$$N[3] = VAR[3] = \sqrt{S[3]^2 - P[3]^2}$$

16.1.4.2. Sistem trifazat cu nul virtual

Sistemele de distribuție trifazate fără nul sunt considerate global (fără calcularea puterilor per fază). Deci aparatul nu afișează decât mărimile totale.

Metoda celor 3 wattmetre cu nul virtual este aplicată pentru calcularea puterii active totale și a puterii reactive totale.

Putere activă totală.

$$P[3]=W[3]=\sum_{i=0}^{2}\left(\frac{1}{NechSec}\sum_{n=0}^{NechSec-1}V[i][n].A[i][n]\right)$$

Putere aparentă totală.

$$S[3]=VA[3]=\frac{1}{\sqrt{3}} \sqrt{(Urms^{2}[0]+Urms^{2}[1]+Urms^{2}[2])} \sqrt{(Arms^{2}[0]+Arms^{2}[1]+Arms^{2}[2])}$$

Observație: Este vorba de puterea aparentă totală eficace, așa cum este definită în IEEE 1459-2010 pentru sistemele de distribuție fără nul.

Puterea reactivă totală (mărimi neactive descompuse - Configurare > Metode de calcul > var)

$$Q_{1}[3]=VARF[3]=\sum_{i=0}^{2}\left(\frac{1}{NechSec}\sum_{n=0}^{NechSec-1}VF[i]\left[n-\frac{NechPer}{4}\right].AF[i][n]\right)$$

Puterea deformantă totală (mărimi neactive descompuse - Configurare > Metode de calcul > var)

D[3]=VAD [3]=
$$\sqrt{(S[3]^2 - P[3]^2 - Q_1[3]^2)}$$

Puterea neactivă totală (mărimi neactive nedescompuse - Configurare > Metode de calcul > var)

N[3]=VAR [3]= $\sqrt{(S[3]^2 - P[3]^2)}$

16.1.4.3. Sistem trifazat fără nul

Sistemele de distribuție trifazate fără nul sunt considerate global (fără calcularea puterilor per fază). Deci aparatul nu afișează decât mărimile totale.

Metoda celor 2 wattmetre (metoda Aron sau metoda celor 2 elemente) este aplicată pentru calcularea puterii active totale și a puterii reactive totale.

a) L1 ca referință

Putere activă, wattmetrul 1

$$\mathbf{P}[0] = \mathbf{W}[0] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[2][n] \cdot A[2][n]$$

Putere activă, wattmetrul 2

$$P[1] = W[1] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec^{-1}} U[0][n] \cdot A[1][n]$$

Putere reactivă, wattmetrul 1

$$Q_1[0] = \text{VARF}[0] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} UF \left[2\left[n - \frac{\text{NechPer}}{4}\right] \cdot AF\left[2\right]\left[n\right]$$

Putere reactivă, wattmetrul 2

$$Q_1[1] = \text{VARF}[1] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} - UF[0][n - \frac{\text{NechPer}}{4}] \cdot AF[1][n]$$

b) L2 ca referință

Putere activă, wattmetrul 1

$$\mathbf{P}[\mathbf{0}] = \mathbf{W}[\mathbf{0}] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[\mathbf{0}][n] \cdot A[\mathbf{0}][n]$$

Putere activă, wattmetrul 2

$$\mathbf{P}[1] = \mathbf{W}[1] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} - U[1][n] \cdot A[2][n]$$

Putere reactivă, wattmetrul 1

$$Q_1[0] = \text{VARF}[0] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} UF[0][n - \frac{\text{NechPer}}{4}] \cdot AF[0][n]$$

Putere reactivă, wattmetrul 2

$$Q_1[1] = \text{VARF}[1] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} - UF[1] n - \frac{\text{NechPer}}{4}] \cdot AF[2][n]$$

c) L3 ca referință

Putere activă, wattmetrul 1

$$\mathbf{P}[0] = \mathbf{W}[0] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[2][n] \cdot A[0][n]$$

Putere activă, wattmetrul 2

$$\mathbf{P}[1] = \mathbf{W}[1] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[1][n] \cdot A[1][n]$$

Putere reactivă, wattmetrul 1

$$Q_1[0] = \text{VARF}[0] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} - \overline{UF}[2] n - \frac{\text{NechPer}}{4} \cdot \overline{AF}[0][n]$$

Putere reactivă, wattmetrul 2

$$Q_{1}[1] = \text{VARF}[1] = \frac{1}{\text{NechSec}} \cdot \sum_{n=0}^{\text{NechSec}-1} \vec{UF} [1] n - \frac{\text{NechPer}}{4}] \cdot \vec{AF} [1][n]$$

d) Calcularea mărimilor totale Putere activă totală P[3] = W[3] = P[0] + P[1]

Putere aparentă totală

$$S[3] = VA [3] = \frac{1}{\sqrt{3}} \sqrt{U_{rms}^{2}[0] + U_{rms}^{2}[1] + U_{rms}^{2}[2]} \sqrt{A_{rms}^{2}[0] + A_{rms}^{2}[1] + A_{rms}^{2}[2]}$$

Observație: Este vorba de puterea aparentă totală eficace, așa cum este definită în IEEE 1459-2010 pentru sistemele de distribuție fără nul.

Puterea reactivă totală (mărimi neactive descompuse – Configurare > Metode de calcul > VAR) $Q_{1}[3] = VARF[3] = Q_{1}[0] + Q_{1}[1]$

Puterea deformantă totală (mărimi neactive descompuse - Configurare > Metode de calcul > VAR)

$$D[3] = VAD[3] = \sqrt{S[3]^2 - P[3]^2 - Q_1[3]^2}$$

Puterea neactivă totală (mărimi neactive nedescompuse – Configurare > Metode de calcul > VAR) $N[3] = VAR[3] = \sqrt{S[3]^2 - P[3]^2}$

16.1.5. NIVELUL PUTERII (FĂRĂ NUL - PE O SECUNDĂ)

a) Sistem de distribuție cu nul

Factor de putere al fazei (i+1), unde $i \in [0; 2]$.

$$\Pr[i] = \frac{\Pr[i]}{S[i]}$$

Factorul de putere fundamental al fazei (i+1) sau cosinusul unghiului fundamentalei tensiunii simple a fazei (i+1) în raport cu fundamentala curentului fazei (i+1), unde i \in [0; 2]

$$DPF[i] = \cos(\phi[i]) = \frac{\sum_{n=0}^{NechSec-1} VF[i][n] \cdot AF[i][n]}{\sqrt{\sum_{n=0}^{NechSec-1} VF[i][n]^2}} \cdot \sqrt{\frac{\sum_{n=0}^{NechSec-1} AF[i][n]^2}{\sum_{n=0}^{NechSec-1} VF[i][n]^2}}$$

Observație: Factorul de putere fundamental se mai numește și factor de deplasare.

Tangenta fazei (i+1) sau tangenta unghiului fundamentalei tensiunii simple a fazei (i+1) în raport cu fundamentala curentului fazei (i+1), unde i \in [0; 2]

$$\operatorname{Tan}[i] = \operatorname{tan}(\phi[i]) = \frac{\sum_{n=0}^{NechSec^{-1}} VF[i][n - \frac{NechPer}{4}] \cdot AF[i][n]}{\sum_{n=0}^{NechSec^{-1}} VF[i][n] \cdot AF[i][n]}$$

Factor de putere total

$$\Pr[3] = \frac{P[3]}{S[3]}$$

Factor de putere fundamental total DPF[3] = $\frac{P_1[3]}{\sqrt{P_1[3]^2 + Q_1[3]^2}}$

Unde:

$$P_{1}[3] = \sum_{n=0}^{NechSec-1} VF[0][n] \cdot AF[0][n] + \sum_{n=0}^{NechSec-1} VF[1][n] \cdot AF[1][n] + \sum_{n=0}^{NechSec-1} VF[2][n] \cdot AF[2][n]$$

$$Q_{1}[3] = \sum_{n=0}^{NechSec-1} VF[0][n - \frac{NechPer}{4}] \cdot AF[0][n] + \sum_{n=0}^{NechSec-1} VF[1][n - \frac{NechPer}{4}] \cdot AF[1][n] + \sum_{n=0}^{NechSec-1} VF^{-2}[n - \frac{NechPer}{4}] \cdot AF^{-2}[[n]]$$

Observație: Factorul de putere fundamental se mai numește și factor de deplasare.

Tangenta totală $Tan[3] = \frac{Q_1[3]}{Q_1[3]}$

$$Ian[3] = \frac{P_1}{P_1}$$

b) Sistem de distribuție cu nul virtual

Factor de putere total.

$$PF[3] = \frac{P[3]}{S[3]}$$

Factor de putere fundamental total.

$$\mathsf{DPF}[3] = \frac{\mathsf{P}_1[3]}{\sqrt{(\mathsf{P}_1[3]^2 + \mathsf{Q}_1[3]^2)}}$$

Unde:

$$P_{1}[3] = \sum_{i=0}^{2} \left(\sum_{n=0}^{\text{NechSec-1}} VF[i][n].AF[i][n] \right)$$
$$Q_{1}[3] = \sum_{i=0}^{2} \left(\sum_{n=0}^{\text{NechSec-1}} VF[i] \left[n - \frac{\text{NechPer}}{4} \right] . AF[i][n] \right)$$

Observație: Factorul de putere fundamental se mai numește și factor de deplasare.

Tangenta totală Tan[3]= $\frac{Q_1[3]}{QP_1[3]}$

c) Sistem trifazat fără nul

Factor de putere total

$$\overline{PF}[3] = \frac{P[3]}{S[3]}$$

Factor de putere fundamental total $P_{I}[3] = \frac{P_{I}[3]}{P_{I}[3]}$

$$DPP[3] = \frac{1}{\sqrt{P_1[3]^2 + Q_1[3]^2}}$$

Unde:

pentru L1 ca referință

$$\mathbf{P}_{1}[3] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[2][n] \cdot A[2][n] + \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} - U[0][n] \cdot A[1][n]$$

pentru L2 ca referință

$$P_{1}[3] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[0][n] \cdot A[0][n] + \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[1][n] \cdot A[2][n]$$

pentru L3 ca referință $P_1[3] = \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} -U[2][n] \cdot A[0][n] + \frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} U[1][n] \cdot A[1][n]$

Observație: Factorul de putere fundamental se mai numește și factor de deplasare.

Tangenta totală Tan[3] = $\frac{Q_1[3]}{P_1[3]}$

16.1.6. ENERGII

Energii fără nul - pe Tint cu reevaluare în fiecare secundă

16.1.6.1. Sistem de distribuție cu nul

Observație: Valoarea Tint este perioada de integrare a puterilor pentru calcularea energiilor; începutul și durata acestei perioade sunt controlate de utilizator.

a) Energii consumate (P[i][n] \ge 0) Energia activă consumată de faza (i+1), unde i \in [0 ; 2].

Ph
$$[0][i]$$
 = Wh $[0][i]$ = $\sum_{n=1}^{T_{int}} \frac{P[i][n]}{3600}$

Energia aparentă consumată de faza (i+1), unde i \in [0 ; 2].

$$Sh[0][i] = VAh[0][i] = \sum_{n=1}^{T_{int}} \frac{S[i][n]}{3600}$$

Energia reactivă inductivă consumată de faza (i+1), unde i \in [0 ; 2]. (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1hL[0][i] = VARhL[0][i] = \sum_{n=1}^{T_{int}} \frac{Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] \ge 0$

Energia reactivă capacitivă consumată de faza (i+1), unde i \in [0; 2]. (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1 hC[0][i] = VARhC[0][i] = \sum_{n=1}^{n} \frac{-Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] < 0$

Energia deformantă consumată de faza (i+1), unde i \in [0 ; 2] (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Dh \left[0 \right] \begin{bmatrix} i \end{bmatrix} = VADh \left[0 \right] \begin{bmatrix} i \end{bmatrix} = \sum_{n=1}^{T_{int}} \frac{D[i] n}{3600}$$

Energia neactivă consumată de faza (i+1), unde i \in [0 ; 2] (Mărimi neactive nedescompuse – Configurare > Metode de calcul > var)

Nh
$$[0][i] = VARh[0][i] = \sum_{n=1}^{T_{int}} \frac{N[i][n]}{3600}$$

Energia activă totală consumată Ph[0][3] = Wh[0][3] =Ph[0][0] + Ph[0][1] + Ph[0][2]

Energia aparentă totală consumată Sh[0][3] = VAh[0][3] = Sh[0][0] + Sh[0][1] + Sh[0][2] Energia reactivă inductivă totală consumată (Mărimi neactive descompuse – Configurare > Metode de calcul > var) $Q_1hL[0][3] = varhL[0][3] = Q_1hL[0][0] + Q_1hL[0][1] + Q_1hL[0][2]$

Energia reactivă capacitivă totală consumată

(Mărimi neactive descompuse – Configurare > Metode de calcul > var) $Q_1C[0][3] = varhC[0][3] = Q_1C[0][0] + Q_1C[0][1] + Q_1C[0][2]$

Energia deformantă totală consumată (Mărimi neactive descompuse – Configurare > Metode de calcul > var) Dh[0][3] = VADh[0][3] = Dh[0][0] + Dh[0][1] + Dh[0][2]

Energia neactivă totală consumată (Mărimi neactive nedescompuse – Configurare > Metode de calcul > var) Nh[0][3] =varh[0][3] = Nh[0][0] + Nh[0][1] + Nh[0][2]

b) Energii generate (P[i][n] < 0) Energia activă generată de faza (i+1), unde i \in [0 ; 2].

Ph
$$[1][i] = Wh [1][i] = \sum_{n=1}^{T_{int}} \frac{-P[i][n]}{3600}$$

Energia aparentă generată de faza (i+1), unde i \in [0 ; 2].

$$\tilde{\mathrm{Sh}}[1][i] = \mathrm{VAh}[1][i] = \sum_{n=1}^{T_{\mathrm{int}}} \frac{S[i][n]}{3600}$$

Energia reactivă inductivă generată de faza (i+1), unde i \in [0 ; 2]. (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1 hL[1][i] = VARhL[1][i] = \sum_{n=1}^{T_{int}} \frac{-Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] < 0$

Energia reactivă capacitivă generată de faza (i+1), unde i \in [0 ; 2]. (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1hC[1][i] = VARhC[1][i] = \sum_{n=1}^{T_{int}} \frac{Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] \ge 0$

Energia deformantă generată de faza (i+1), unde i \in [0 ; 2] (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$\overline{Dh}[1][i] = VADh[1][i] = \sum_{n=1}^{T_{int}} \frac{D[i][n]}{3600}$$

Energia neactivă generată de faza (i+1), unde i \in [0 ; 2] (Mărimi neactive nedescompuse – Configurare > Metode de calcul > var)

$$\tilde{N}h[1][i] = VARh[1][i] = \sum_{n=1}^{T_{int}} \frac{N[i][n]}{3600}$$

Energia activă totală generată Ph[1][3] = Wh[1][3] = Ph[1][0] + Ph[1][1] + Ph[1][2]

Energia aparentă totală generată Sh[1][3] = VAh[1][3] = Sh[1][0] + Sh[1][1] + Sh[1][2]

Energia reactivă inductivă totală generată (Mărimi neactive descompuse – Configurare > Metode de calcul > var) $Q_1hL[1][3] = varhL[1][3] = Q_1hL[1][0] + Q_1hL[1][1] + Q_1hL[1][2]$

Energia reactivă capacitivă totală generată

(Mărimi neactive descompuse – Configurare > Metode de calcul > var) $Q_hC[1][3] = varhC[1][3] = Q_hC[1][0] + Q_hC[1][1] + Q_hC[1][2]$ Energia deformantă totală generată (Mărimi neactive descompuse – Configurare > Metode de calcul > var) Dh[1][3] = VADh[1][3] = Dh[1][0] + Dh[1][1] + Dh[1][2]

Energia neactivă totală generată (Mărimi neactive nedescompuse – Configurare > Metode de calcul > var) Nh[1][3] = varh[1][3] = Nh[1][0] + Nh[1][1] + Nh[1][2]

16.1.6.2. Sistem de distribuție fără nul

Aici nu vom vorbi despre energiile totale pentru i = 3 (sisteme trifazate fără nul).

a) Energii consumate totale (P[i][n] \ge 0)

Energia activă totală consumată

Ph
$$[0][i]$$
 = Wh $[0][i]$ = $\sum_{n}^{T_{int}} \frac{P[i][n]}{3600}$

Energia aparentă totală consumată

Sh
$$[0][i] = VAh[0][i] = \sum_{n=1}^{I_{int}} \frac{S[i][n]}{3600}$$

Energia reactivă inductivă totală consumată

(Mărimi neactive descompuse - Configurare > Metode de calcul > var)

$$Q_1 hL[0][i] = VARhL[0][i] = \sum_{n=1}^{T_{int}} \frac{Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] \ge 0$

Energia reactivă capacitivă totală consumată

(Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1 \tilde{hC}[0][i] = VARhC[0][i] = \sum_{n=1}^{T_{int}} \frac{-Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] < 0$

Energia deformantă totală consumată

(Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Dh \left[0\right][i] = VADh \left[0\right][i] = \sum_{n=1}^{N} \frac{D[i][n]}{3600}$$

Energia neactivă totală consumată

(Mărimi neactive nedescompuse – Configurare > Metode de calcul > var)

Nh
$$[0][i] = \text{VARh}[0][i] = \sum_{n=1}^{\infty} \frac{N[i][n]}{3600}$$

b) Energii totale generate, altele decât cea continuă (P[i][n] < 0) Energia activă totală generată

Ph
$$[1][i] = Wh [1][i] = \sum_{n=1}^{T_{int}} \frac{-P[i][n]}{3600}$$

Energia aparentă totală generată

Sh
$$[1][i] = VAh[1][i] = \sum_{n=1}^{T_{int}} \frac{S[i][n]}{3600}$$

Energia reactivă inductivă totală generată

(Mărimi neactive descompuse – Configurare > Metode de calcul > var) $T_{\rm res} = O \left[\frac{1}{2} T_{\rm res} \right]$

$$Q_1 hL[1][i] = VARhL[1][i] = \sum_{n=1}^{n} \frac{-Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] < 0$

Energia reactivă capacitivă totală generată (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$Q_1 \bar{hC}[1][i] = VARhC[1][i] = \sum_{n=1}^{T_{int}} \frac{Q_1[i][n]}{3600}$$
 unde $Q_1[i][n] \ge 0$

Energia deformantă totală generată (Mărimi neactive descompuse – Configurare > Metode de calcul > var)

$$\tilde{D}h[1][i] = VADh[1][i] = \sum_{n=1}^{T_{int}} \frac{D[i][n]}{3600}$$

Energia neactivă totală generată

(Mărimi neactive nedescompuse – Configurare > Metode de calcul > var) $T \rightarrow r$

$$\tilde{N}h[1][i] = VARh[1][i] = \sum_{n=1}^{T_{int}} \frac{N[i][n]}{3600}$$

16.2. SURSE DE DISTRIBUȚIE ACCEPTATE DE APARAT

Vezi conectările § 4.6.

16.3. HISTEREZIS

Histerezisul este un principiu de filtrare utilizat frecvent după un etaj de detecție a pragului, în modul Alarmă C.A 8333) (vezi § 4.10). O reglare corectă a valorii histerezisului evită o schimbare repetată a stării, atunci când valoarea oscilează în jurul pragului.

16.3.1. DETECTAREA SUPRATENSIUNII

De ex., pentru un histerezis de 2%, nivelul de returnare pentru o detectare a supratensiunii va fi egal cu (100% - 2%), adică 98 % din tensiunea de prag.

16.3.2. DETECTAREA GOLULUI SAU A TĂIERII

De ex., pentru un histerezis de 2%, nivelul de returnare în cadrul unei detectări a golului va fi egal cu (100% + 2%), adică 102% din tensiunea de prag.

16.4. VALORILE MINIME ALE SCĂRII FORMELOR DE UNDĂ ȘI VALORILE EFICACE MINIME

	Valoarea minimă a scării (modul formă de undă)	Valori eficace minime
Tensiuni simple și compuse	8 V ⁽¹⁾	2 V ⁽¹⁾
Amp <i>FLEX</i> ® A193 (6500 A și 10 kA)	90 A	10 A
Mini <i>FLEX</i> MA193 (6500 A și 10 kA)	90 A	10 A
Amp <i>FLEX</i> ® A193 (100 A)	800 mA	100 mA
Mini <i>FLEX</i> MA193 (100 A)	800 mA	100 mA
Clește J93	30 A	3 A
Clește C193	8 A	1 A
Clește PAC93	8 A	1 A
Clește MN93	2 A	200 mA
Clește MN93A (100 A)	800 mA	100 mA
Clește E3N (10 mV/A)	800 mA	100 mA
Clește E3N (100 mV/A)	80 mA	10 mA
Clește MN93A (5 A)	40 mA ⁽¹⁾	5 mA ⁽¹⁾
Adaptator 5 A și Essailec®	40 mA ⁽¹⁾	5 mA ⁽¹⁾

(1) Valoarea se înmulțește cu divizorul utilizat (dacă nu este unitar).

16.5. DIAGRAMA CU 4 CADRANE

Această diagramă se utilizează în cadrul măsurării puterilor și energiilor W (vezi § 9).

Figura 111 : Diagrama cu 4 cadrane

16.6. MECANISMUL DE DECLANȘARE A CAPTĂRILOR TRANZIENȚILOR

Numai pentru C.A 8333.

Nivelul eșantionului este o valoare constantă, echivalentul a 256 eșantioane per perioadă. Când este lansată o cercetare a tranzienților, fiecare eșantion este comparat cu cel din perioada precedentă. În standardul IEC 61000-4-30, această metodă de urmărire se numește "metoda ferestrei glisante". Perioada precedentă corespunde mijlocului unui tub virtual; este utilizată ca referință. Atunci când un eșantion iese din tub, este considerat ca un eveniment declanșator; reprezentarea tranzientului este astfel captată de aparat. Perioada care precede evenimentul și cele trei perioade care urmează după aceasta sunt stocate în memorie.

Perioada de referință (precedentă perioadei urmărite) Partea de sus a tubului virtual de referință Perioada urmărită Perioada urmărită Partea de jos a tubului virtual de referință Eveniment declanșator

lată reprezentarea grafică a mecanismului de declanșare a unei captări de tranzient:

Semilărgimea tubului virtual pentru tensiune și curent este egală cu pragul programat în modul Tranzitoriu al configurației (vezi § 4.8).

16.7. GLO	DSAR
\simeq	Componente alternative și continue.
~	Numai componentă alternativă.
_	Numai componentă continuă.
ŧ	Defazai inductiv
÷	Defazaj capacitiv
o	Grad
+	Modul Expert
	Valoare absolută
Φ	Defazajul tensiunii simple (tensiune de fază) în raport cu curentul simplu (curent de linie).
Σ	Valoarea sistemului.
%	Procentai
%f	Valoarea fundamentală de referintă (procentai din valoarea fundamentală).
%r	Valoarea totală de referintă (procentai din valoarea totală).
A	Curent simplu (curent de linie) sau unitatea de măsură amper.
A-h	Armonică de curent.
Acf	Factor de vârf al curentului.
Ad	Curent eficace deformant.
Adc	Curent continuu.
Apk+	Valoarea de vârf maximă a curentului.
Apk-	Valoarea de vârf minimă a curentului.
Arms	Curent eficace.
Athd	Distorsiunea armonică totală a curentului.
Athdf	Distorsiunea armonică a curentului, cu valoarea eficace a fundamentalei de referintă.
Athdr	Distorsiunea armonică a curentului, cu valoarea eficace totală, fără c.c. de referintă.
Aunb	Nivelul dezechilibrului invers al curentului.
AVG	Valoarea medie (media aritmetică).).
Bandă de tre	cere : intervalul de frecvente pentru care răspunsul unui aparat este superior unui minim.
BTU	British Thermal Unit (unitate de energie britanică).
CF	Factor de vârf (Crest Factor) pentru curent sau pentru tensiune: raportul între valoarea de vârf și valoarea eficace a curentului.
Componentă	fundamentală: componentă a cărei frecvență este cea fundamentală.
$\cos \Phi$	Cosinusul defazajului tensiunii față de curent (factor de deplasare – DPF).
Tăiere	reducerea tensiunii într-un punct al rețelei de energie electrică sub pragul de tăiere.
Gol de tensiu	une: scăderea temporară a amplitudinii tensiunii într-un punct al rețelei de energie electrică sub un anumit prag dat.
D	Putere deformantă.
C.c.	Componentă continuă (curent sau tensiune).
Dezechilibru	de tensiune într-o rețea de energie electrică polifazată: stare în care valorile eficace ale tensiunilor între conductori (componenta fundamentală) și/sau diferențele de fază între conductorii succesivi nu sunt toate egale.
Dh	Energie deformantă.
DPF	Factor de deplasare (cos Φ).
E	Exa (10 ¹⁸)
FK	Factor K. Permite cuantificarea efectului unei sarcini pe un transformator.
FHL	Factor de pierdere armonică.
Scânteiere (f	ilicker): efect vizual produs de variația tensiunii electrice.
Frecvență	numărul de cicluri complete ale tensiunii sau curentului produse în timp de o secundă.
G	Giga (10 ⁹)
Armonice: te	nsiuni sau curenți care există în exploatările electrice la frecvențe care sunt multipli ai frecvenței fundamentale.
Histerezis	diferența de amplitudine între valorile pragurilor de intrare și de ieșire.
Hz	Frecvența rețelei.
J	Joule
k	kilo (10 ³)
L	Canal (Linie).

m	milli (10 ⁻³)
ms	milisecundă.
Μ	Mega (10 ⁶)
MAX	Valoare maximă.
MIN	Valoare minimă.
Ν	Putere neactivă.
Nh	Energie neactivă.
Р	Putere activă.
Р	Peta (10 ¹⁵)
PF	Factor de putere (Power Factor): raportul dintre puterea activă si puterea aparentă.
Ph	Energie activă.
Fază	relatia temporală dintre curent și tensiune. în circuitele de curent alternativ.
РК	sau VÂRF. Valoarea de vârf maximă (+) sau minimă (-) a semnalului.
PST	Severitatea scânteierij pe termen scurt (short term severity). Aparatul calculează PST-ul pe 10 minute.
0	Putere reactivă.
~₁ Q h	Energie reactivă
Rangul unei	armonice: număr întreg egal cu raportul dintre frecvența armonicii și cea a fundamentalei
RMS	Valoarea eficace a curentului sau tensiunii (Root Mean Square). Rădăcina pătrată din media aritmetică a pătratelor valorilor instantanee ale unei mărimi, pe un interval de timp specificat.
S	Putere aparentă.
S-h	Armonice de putere.
Prag de gol:	valoarea tensiunii specificată pentru a permite detectarea începutului si sfârsitului unui gol de tensiune.
Sh	Energie aparentă.
Supratensiu	ne temporară la frecvența industrială: creșterea temporară a amplitudinii tensiunii într-un punct al rețelei de energie electrică peste un anumit prag dat.
t	Data relativă a cursorului temporal.
т	Tera (10 ¹²)
tg Φ	Tangenta defazajului tensiunii față de curent.
tg Φ Tensiune nor	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea.
tg Φ Tensiune nor tep	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear).
tg Φ Tensiune nor tep THD	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r).
tg Φ Tensiune nor tep THD U	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h	 Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția armonicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h Ucf	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie).
tg Φ Tensiune nor tep THD U U-h Ucf Ud	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă.
tg ⊕ Tensiune nor tep THD U U-h Ucf Ud Udc	 Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția armonicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă.
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Udc Uh	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie).
tg ⊕ Tensiune nor tep THD U-h Ucf Ud Udc Uh Upk+	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h Ucf Ud Udc Uh Upk+ Upk-	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk- Urms	Tangenta defazajului tensiunii față de curent. minală : tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie).
tg ⊕ Tensiune nor tep THD U-h Ucf Ud Udc Uh Upk+ Upk- Urms Uthd	 Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția armonicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie). Valoare a de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk+ Upk- Urms Uthd Uthdf	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie). Valoare a remoincă totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică totală a tensiunii compuse (tensiune de linie).
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdr	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace a fundamentalei de referință. Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace totală de referință fără c.c.
tg Φ Tensiune nor tep THD U-h Ucf Ud Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdr Uunb	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace a fundamentalei de referință fără c.c. Nivelul dezechilibrului invers al tensiunii compuse (tensiune de linie).
tg Φ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdr Uunb V	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace a fundamentalei de referință. Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace totală de referință fără c.c. Nivelul dezechilibrului invers al tensiunii compuse (tensiune de linie). Tensiune simplă sau unitatea volt.
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Uh Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdf Uthdr V V V-h	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie), Distorsiunea armonică a tensiunii compuse (tensiune de linie), Cu valoarea eficace totală de referință fără c.c. Nivelul dezechilibrului invers al tensiunii compuse (tensiune de linie). Tensiune simplă sau unitatea volt. Armonice de tensiune simplă (tensiunea fazei).
tg ⊕ Tensiune nor tep THD U-h Ucf Ud Udc Uh Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdf Uthdr V V-h V-h Vcf	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) (MS deformantă. Tensiune compusă (tensiune de linie). Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Distorsiune armonică totală a tensiunii compuse (tensiune de linie). Distorsiune armonică totală a tensiunii compuse (tensiune de linie). Distorsiune armonică totală a tensiunii compuse (tensiune de linie). Distorsiune armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Tensiune simplă sau unitatea volt. Armonice de tensiune simplă (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei).
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdf Uthdr Uunb V V-h Vcf Vd	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) (MS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Valoare de vârf minimă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Tensiune simplă sau unitatea volt. Armonice de tensiune simplă (tensiunea fazei). Factor de vârf al tensiuni simple (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Tensiune simplă (tensiunea fazei) eficace deformantă.
tg Φ Tensiune nor tep THD U U-h Ucf Udc Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdf Uthdf V V-h Vcf Vd Vdc	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A8333) față de valoarea eficace totală fară c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) (MS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) eficace. Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace a fundamentalei de referință. Distorsiunea armonică a tensiunii compuse (tensiune de linie), cu valoarea eficace totală de referință fără c.c. Nivelul dezechilibrului invers al tensiunii compuse (tensiune de linie), cu valoarea eficace a fundamentalei de referință. Distorsiunea armonică a tensiunii compuse (tensiune de linie). Tensiune simplă su unitatea volt. Armonice de tensiune simplă (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Tensiune simplă (tensiunea fazei) eficace deformantă. Tensiune simplă (tensiunea fazei) eficace deformantă. Tensiune simplă (tensiunea fazei) continuă.
tg ⊕ Tensiune nor tep THD U U-h Ucf Udc Uh Udc Uh Upk+ Upk- Upk- Urms Uthd Uthdf Uthdf Uthdr Uunb V V-h V-h Vcf Vd Vdc Vdc Vdc	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă propoția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) (MS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Distorsiunea armonică totală a tensiunii compuse (tensiune de linie). Distorsiunea armonică a tensiunii compuse (tensiune de linie). Nivelul dezechilibrului invers al tensiunii compuse (tensiune de linie). Tensiune simplă su unitatea volt. Armonice de tensiune simplă (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Tensiune simplă (tensiunea fazei) continuă. Valoare de vârf maximă a tensiunii simple (tensiunea fazei). Tensiune simplă (tensiunea fazei) continuă. Valoare de vârf maximă a tensiunii simple (tensiunea fazei).
tg Φ Tensiune nor tep THD U U-h Ucf Udc Uh Upk+ Upk- Urms Uthd Uthdf Uthdf Uthdf Uthdr Uunb V V-h Vcf Vd Vdc Vpk+ Vdc Vpk+	Tangenta defazajului tensiunii față de curent. minală: tensiunea prin care este denumită sau identificată o rețea. Tonă echivalent petrol (în domeniul nuclear sau nenuclear). Distorsiune armonică totală (Total Harmonic Distorsion). Nivelul distorsiunii armonice totale reprezintă proporția ar- monicelor dintr-un semnal față de valoarea eficace fundamentală (%f) sau (numai pentru C.A 8333) față de valoarea eficace totală fără c.c. (%r). Tensiune compusă (tensiune de linie). Armonice de tensiune compusă (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Factor de vârf al tensiunii compuse (tensiune de linie). Tensiune compusă (tensiune de linie) RMS deformantă. Tensiune compusă (tensiune de linie) continuă. Armonica tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Valoare de vârf maximă a tensiunii compuse (tensiune de linie). Distorsiune armonică totală a tensiunii compuse (tensiune de linie). Distorsiune armonică totală a tensiunii compuse (tensiune de linie). Distorsiune armonică a tensiunii compuse (tensiune de linie). Tensiune simplă su unitatea volt. Armonice de tensiune simplă (tensiunea fazei). Factor de vârf al tensiunii simple (tensiunea fazei). Fansiune simplă (tensiunea fazei) eficace deformantă. Tensiune simplă (tensiunea

- Canal și fază: un canal de măsurare corespunde unei diferențe de potențial între doi conductori. O fază corespunde unui conductor simplu. În sistemele polifazate, un canal de măsurare poate fi între două faze, o fază și nul, o fază și pământ sau nul și pământ.
- Vrms Tensiune simplă (tensiunea fazei) eficace.
- Vthd Distorsiunea armonică totală a tensiunii simple (tensiunea fazei).
- Vthdf Distorsiunea armonică a tensiunii simple (tensiunea fazei), cu valoarea eficace a fundamentalei de referință.
- Vthdr Distorsiunea armonică a tensiunii simple (tensiunea fazei), cu valoarea eficace totală de referință fără c.c.
- Vunb Nivelul dezechilibrului invers al tensiunii simple (tensiunea fazei).

Wh Watt-oră.

L Exceptând bateria și cardul de memorie, aparatul nu cuprinde nicio piesă care să poată fi înlocuită de personal neformat și neagreat. Orice intervenție neagreată sau orice înlocuire a unei piese cu altele echivalente riscă să pună în pericol serios siguranța.

17.1. CURĂȚAREA CUTIEI

Decuplați toate conexiunile aparatului și stingeți-l.

Utilizați o cârpă moale, ușor îmbibată cu apă și săpun. Ștergeți cu o cârpă umedă și uscați repede cu o cârpă uscată sau cu aer comprimat. Nu utilizați alcool, solvent sau hidrocarburi.

17.2. ÎNTREȚINEREA SENZORILOR

Senzorii de curent trebuie întreținuți regulat:

- Pentru curăţare, utilizaţi o cârpă moale, uşor îmbibată cu apă şi săpun. Ştergeţi cu o cârpă umedă şi uscaţi repede cu o cârpă uscată sau cu aer comprimat. Nu utilizaţi alcool, solvent sau hidrocarburi.
- Mențineți întrefierurile cleştilor în perfectă stare de curățenie. Ungeți ușor părțile metalice vizibile, pentru a evita ruginirea.

17.3. ÎNLOCUIREA BATERIEI

A Pentru a asigura continuarea siguranței, nu înlocuiți bateria decât cu un model original (vezi § 19.3).

- Nu aruncați bateria în foc.
- Nu expuneți bateria la o temperatură mai mare de 100°C.
- Nu scurtcircuitați bornele pachetului de baterii.

Demontarea bateriei uzate.

- Pentru a evita orice risc de şoc electric, deconectați cablurile de alimentare şi de măsurare ale aparatului.
- Întoarceți aparatul, scoateți suportul și blocați micile opritoare galbene din spate.
- Cu ajutorul unei monede, desfaceți cu un sfert de tur cele două șuruburi situate pe spatele cutiei.

Cu ajutorul unei șurubelnițe drepte, scoateți capacul din locașul său.

- Întoarceți aparatul, ținând bateria care iese din locașul său.
- Decuplați conectorul bateriei fără a trage de fire.

Observație: Qualistar+ asigură funcționalitatea de ceas timp de aproximativ 4 ore, fără baterie. Qualistar+ menține o captare a curentului de pornire timp de aproximativ 2 ore, fără baterie.

Bateriile și acumulatorii uzați nu trebuie tratați ca deșeuri menajere. Duceți-le la punctul de colectare corespunzător, în vederea reciclării.

Montarea bateriei noi.

- Conectați bateria nouă. Conectorul are un dispozitiv pentru a evita cuplarea inversă.
- Puneți bateria în locașul său și aranjați firele ca să nu iasă în afară.
- Puneți capacul bateriei și strângeți cele 2 șuruburi cu un sfert de tur.

Atenție: În cazul deconectării bateriei, chiar dacă aceasta nu a fost înlocuită, trebuie neapărat efectuată o reîncărcare completă. Aceasta pentru a-i permite aparatului să cunoască starea de încărcare a bateriei (informație care se pierde la deconectare).

17.4. ÎNLOCUIREA PELICULEI ECRANULUI

Pentru a înlocui pelicula ecranului aparatului, procedați astfel:

- Scoateți pelicula veche a ecranului.
- La pelicula nouă pentru ecran, scoateți folia de protecție din plastic cu ajutorul limbii albe.
- Puneți partea adezivă a peliculei pe ecranul aparatului. Neteziți pelicula cu o cârpă curată, pentru a elimina eventualele bule de aer.

17.5. CARDUL DE MEMORIE

Aparatul acceptă carduri de memorie de tip SD (SDSC), SDHC și SDXC.

La scoaterea și introducerea cardului de memorie, asigurați-vă că aparatul este deconectat și stins. Protejați la scriere cardul de memorie atunci când îl scoateți din aparat. Deprotejați cardul la scriere înainte de a-l plasa în locașul său din aparat.

Pentru a scoate cardul de memorie din locașul său, procedați ca la înlocuirea bateriei, §17.3. Odată bateria scoasă din locașul său, apăsați pe limbă, apoi pe cardul de memorie, pentru a-l scoate din aparat.

Pentru a pune la loc cardul, glisați-l orizontal în locașul său, până când este împins complet și limba reajunge în poziție. Apoi puneți la loc bateria și capacul bateriilor, așa cum se arată în §17.3.

17.6. VERIFICAREA METROLOGICĂ

⚠ Ca la toate aparatele de măsurare sau testare, este necesară o verificare periodică.

Vă recomandăm să efectuați o verificare anuală a acestui aparat. Pentru verificări și etalonări, adresați-vă laboratoarelor noastre de metrologie acreditate (informații și date de contact la cerere) sau agentului din țara dvs.

Observație: Începând de la prima verificare a aparatului, submeniul Informații al meniului Configurare afișează data reglării și data următoarei reglări, ca în exemplul prezentat mai jos:

Figura 112 : Meniul Informații

106

17.7. REPARAȚII

Pentru reparații, în garanție sau nu, returnați aparatul vânzătorului.

17.8. ACTUALIZAREA SOFTWARE-ULUI ÎNCORPORAT

În cadrul preocupării sale constante de a furniza cele mai bune servicii posibile în ceea ce privește performanțele și evoluțiile tehnice, Chauvin-Arnoux vă oferă posibilitatea de a actualiza software-ul integrat în acest aparat, descărcând gratuit noua versiune disponibilă pe site-ul nostru de pe Internet.

Vizitați site-ul nostru:

http://www.chauvin-arnoux.com

Înscrieți-vă și creați un cont.

Apoi mergeți la rubrica "Espace support logiciel" (Spațiu pentru asistența software), apoi "Logiciels accès libre" (Software cu acces liber), apoi "C.A 8336".

Conectați aparatul la PC cu ajutorul cablului USB tip A-B furnizat.

Actualizarea software-ului încorporat este condiționată de compatibilitatea sa cu versiunea materială a aparatului. Această versiune este indicată în submeniul Informații din meniul Configurare (vezi figura 112 de mai sus).

Atenție: actualizarea software-ului încorporat presupune ștergerea tuturor datelor: configurare, campanii de alarme (numai pentru

C.A 8333), fotografii, cercetările tranzienților (numai pentru C.A 8333), înregistrările tendințelor. Salvați datele care trebuie păstrate pe un PC, cu ajutorul software-ului PAT2 (vezi § 13) înainte de a începe actualizarea software-ului încorporat.

Garanția noastră este valabilă, în absența altei prevederi exprese, timp de trei ani de la data punerii la dispoziție a aparatului. Extrasul din Condițiile noastre generale de vânzare este comunicat la cerere.

Garanția nu este valabilă în cazul:

- utilizării incorecte a echipamentului sau utilizării acestuia cu materiale incompatibile;
- modificărilor aduse echipamentului fără autorizația explicită a serviciului tehnic al producătorului;
- lucrărilor efectuate asupra aparatului de o persoană neagreată de producător;
- unei adaptări la o anumită aplicație, neprevăzută în definiția aparatului sau neindicată în instrucțiunile de exploatare;
- deteriorărilor datorate lovirii, căderii sau inundării.
19.1. ANALIZOR DE REȚELE ELECTRICE TRIFAZATE

C.A 8331 fără clește	 P01160511
C.A 8333 fără clește	P01160541

Aparatul este livrat cu:

- o sacoșă de transport nr. 22,
- 4 cabluri de siguranță drept-drept negre, cu lungimea de 3 m, atașate cu legătură velcro,
- 4 cleşti crocodil negri,
- un bloc de alimentare de la rețea specific, PA 30 W, cu un cablu de rețea,
- un set de 12 spioni și inele pentru identificarea fazelor și a cablurilor de tensiune și a fazelor și senzorilor de curent.
- un cablu USB A/B de 1,80 m cu ferită,
- un software Power Analyser Transfer (PAT2),
- un atestat de verificare,
- instrucțiuni de exploatare pe CD (câte unul pentru fiecare limbă),
- fișe de siguranță în mai multe limbi.

19.2. ACCESORII

Adaptor (trifazat) 5 A	. P01101959
Adaptor Essailec® 5A (trifazat)	. P01102131
Clește MN93	. P01120425B
Clește MN93A	. P01120434B
Clește PAC93	. P01120079B
Clește C193	. P01120323B
AmpFLEX® A193 450 mm	. P01120526B
AmpFLEX® A193 800 mm	. P01120531B
MiniFLEX MA193 250 mm	. P01120580
MiniFLEX MA193 350 mm	. P01120567
Clește E3N	. P01120043A
Adaptor cleşte E3N	. P01102081
Bloc de rețea + clește E3N	. P01120047
Software Dataview	. P01102095

19.3. PIESE DE SCHIMB

Pachet de baterii NiMH 9,6 V 4 Ah	P01296024
Cablu USB-A USB-B	P01295293
Bloc de rețea PA 30 W	P01102057
Peliculă de protecție pentru ecran	P01102059
Sacoșă de transport nr. 22	P01298056
Sacoșă de transport nr. 21	P01298055
Set de 4 cabluri de siguranță negre banană-banană drept-drept, set de 4 clești crocodil și set de 12 spioni și inele	
de identificare a fazelor, cablurilor de tensiune și senzorilor de curent	P01295476
Set de spioni și inele pentru identificarea fazelor, cablurilor de tensiune și a senzorilor de curent	P01102080

04 - 2015 Code 694286A18 - Ed. 4

DEUTSCHLAND - Chauvin Arnoux GmbH Ohmstraße 1 - 77694 Kehl / Rhein Tel: (07851) 99 26-0 - Fax: (07851) 99 26-60

UNITED KINGDOM - Chauvin Arnoux Ltd Unit 1 Nelson Ct - Flagship Sq - Shaw Cross Business Pk Dewsbury, West Yorkshire - WF12 7TH Tel: 01924 460 494 - Fax: 01924 455 328

ITALIA - Amra SpA Via Sant'Ambrogio, 23/25 - 20846 Macherio (MB) Tel: 039 245 75 45 - Fax: 039 481 561

ÖSTERREICH - Chauvin Arnoux Ges.m.b.H Slamastrasse 29/2/4 - 1230 Wien Tel: 01 61 61 9 61-0 - Fax: 01 61 61 9 61-61

SCANDINAVIA - CA Mätsystem AB Sjöflygvägen 35 - SE 18304 TÄBY Tel: +46 8 50 52 68 00 - Fax: +46 8 50 52 68 10 **SCHWEIZ - Chauvin Arnoux AG** Moosacherstrasse 15 - 8804 AU / ZH Tel: 044 727 75 55 - Fax: 044 727 75 56

中国 - 上海浦江埃纳迪斯仪表有限公司 上海市虹口区祥德路381号3号楼3楼 Tel: +86 21 65 21 51 96 - Fax: +86 21 65 21 61 07

ESPAÑA - Chauvin Arnoux Ibérica S.A. C/ Roger de Flor, 293 - 1a Planta - 08025 Barcelona Tel: 90 220 22 26 - Fax: 93 459 14 43

MIDDLE EAST - Chauvin Arnoux Middle East P.O. BOX 60-154 - 1241 2020 JAL EL DIB (Beirut) - LEBANON Tel: (01) 890 425 - Fax: (01) 890 424

USA - Chauvin Arnoux Inc - d.b.a AEMC Instruments 200 Foxborough Blvd. - Foxborough - MA 02035 Tel: (508) 698-2115 - Fax: (508) 698-2118

http://www.chauvin-arnoux.com

190, rue Championnet - 75876 PARIS Cedex 18 - FRANCE Tél. : +33 1 44 85 44 85 - Fax : +33 1 46 27 73 89 - info@chauvin-arnoux.fr Export : Tél. : +33 1 44 85 44 38 - Fax : +33 1 46 27 95 59 - export@chauvin-arnoux.fr