

PEL 51 PEL 52

Registrador de potencia y energía

Usted acaba de adquirir un **registrador de potencia y energía PEL51** o **PEL52** y le agradecemos la confianza que ha depositado en nosotros.

Para conseguir las mejores prestaciones de su instrumento:

- lea atentamente este manual de instrucciones,
- **respete** las precauciones de uso.

X

\triangle	¡ATENCIÓN, riesgo de PELIGRO! El operador debe consultar el presente manual de instrucciones cada vez que aparece este símbolo de peligro.
Â	ATENCIÓN, existe riesgo de descarga eléctrica. La tensión aplicada en las piezas marcadas con este símbolo puede ser peligrosa.
	Instrumento protegido mediante doble aislamiento.
i	Información o truco útil para leer.
52	Tarjeta SD.
	Campo magnético importante.
<u>ک</u>	El producto se ha declarado reciclable tras un análisis del ciclo de vida de acuerdo con la norma ISO14040.
Ess Conception	Chauvin Arnoux ha estudiado este dispositivo en el marco de una iniciativa global de ecodiseño. El análisis del ciclo de vida ha permitido controlar y optimizar los efectos de este producto en el medio ambiente. El producto satisface con mayor precisión a objetivos de reciclaje y aprovechamiento superiores a los estipulados por la reglamentación.
CE	El marcado CE indica el cumplimiento de la Directiva Europea sobre Baja Tensión 2014/35/UE, la Directiva sobre Compatibilidad Electromagnética 2014/30/UE, la Directiva sobre Equipos Radioeléctricos 2014/53/UE y la Directiva sobre Restricciones a la utilización de determinadas Sustancias Peligrosas RoHS 2011/65/UE y 2015/863/UE.
UK CA	El marcado UKCA certifica la conformidad del producto con los requisitos aplicables en el Reino Unido en materia de seguridad de baja tensión, compatibilidad electromagnética y limitación de sustancias peligrosas.
	El contra de la comptencia de comptencia de la comptencia de la contra de la comptencia de la comptencia de la

El contenedor de basura tachado significa que, en la Unión Europea, el producto deberá ser objeto de una recogida selectiva de conformidad con la directiva RAEE 2012/19/UE: este material no se debe tratar como un residuo doméstico.

ÍNDICE

	C
	b
1.1. Estado de suministro	
1.2. Accesorios	
1.3. Recambios	
1.4. Carga de la bateria	
2. PRESENTACION DE LOS INSTRUMENTOS	
2.2. PEL51 y PEL52	9
2.3. Regleta de bornes	
2.4. Dorso	
2.5. Ranura tarjeta SD	
2.6. Montaje	
2.7. Funciones de las teclas	
2.8. Display LCD	
2.9. Tarjeta de memoria	
3. FUNCIONAMIENTO	
3.1. Puesta en marcha y paro del instrumento	
3.2. Configuración del instrumento	14
3.3. Interfaz de usuario remota	19
3.4. Información	
4. USO	24
4.1. Redes de distribución y conexiones del PEL	24
4.2. Registro	25
4.3. Modos de visualización de los valores medidos	25
5. SOFTWARE Y APLICACIÓN	31
5.1. Software PEL Transfer	
5.2. Aplicación PEL	
6. CARACTERÍSTICAS TÉCNICAS	
6.1. Condiciones de referencia	
6.2. Características eléctricas	
6.3. Variación en el rango de uso	
6.4. Fuente de alimentación	
6.5. Características medioambientales	
6.6. WiFi	41
6.7. Características mecánicas	41
6.8. Seguridad eléctrica	41
6.9. Compatibilidad electromagnética	41
6.10. Emisión radio	41
6.11. Tarjeta de memoria	41
7. MANTENIMIENTO	
7.1. Limpieza	
7.2. Batería	
7.3. Actualización del firmware	
7.4. Formateo de la tarieta SD	
7.5. Mensajes	
8. GARANTÍA	
9. ANEXO	
9.1. Medidas	
9.2. Fórmulas de medida	
9.3. Agregación	
9.4. Redes eléctricas soportadas	
9.5. Magnitudes disponibles	
9.6. Magnitudes disponibles	51
9.7. Glosario	

Definición de las categorías de medida

- La categoría de medida IV (CAT IV) corresponde a las medidas realizadas en la fuente de la instalación de baja tensión.
 Ejemplo: entradas de energía, contadores y dispositivos de protección.
- La categoría de medida III (CAT III) corresponde a las medidas realizadas en la instalación del edificio.
 Ejemplo: cuadro de distribución, disyuntores, máquinas o aparatos industriales fijos.
- La categoría de medida II (CAT II) corresponde a las medidas realizadas en los circuitos directamente conectados a la instalación de baja tensión.
 Ejemplo: alimentación de aparatos electrodomésticos y de herramientas portátiles.

Ejemplo de identificación de ubicaciones de categorías de medida

- 1 Fuente de alimentación de baja tensión
- 2 Fusible de servicio
- 3 Tarificador
- 4 Disyuntor o seccionador de red *
- 5 Placa fotovoltaica
- 6 Ondulador
- 7 Disyuntor o seccionador
- 8 Contador de producción

- 9 Cuadro eléctrico
- 10 Interruptor de la luz
- 11 Iluminación
- 12 Caja de derivación
- 13 Cableado de las tomas de corriente
- 14 Bases de enchufes
- 15 Lámparas enchufables
- 16 Electrodomésticos, herramientas portátiles

*: El proveedor de servicios puede instalar el disyuntor o el seccionador de red. En caso contrario, el punto de demarcación entre las categorías de medida IV y III es el primer seccionador del cuadro eléctrico.

Este instrumento cumple con las normas de seguridad IEC/EN 61010-2-030, los cables cumplen con las normas IEC/EN 61010-031 y los sensores de corriente cumplen con la norma IEC/EN 61010-2-032, para tensiones de hasta 600 V en categoría III.

El incumplimiento de las instrucciones de seguridad puede ocasionar un riesgo de descarga eléctrica, fuego, explosión, destrucción del instrumento e instalaciones.

- El operador y/o la autoridad responsable deben leer detenidamente y entender correctamente las distintas precauciones de uso. El pleno conocimiento de los riesgos eléctricos es imprescindible para cualquier uso de este instrumento.
- Utilice específicamente los cables y accesorios suministrados. El uso de cables (o accesorios) de tensión o categoría inferiores reduce la tensión o categoría del conjunto instrumento + cables (o accesorios) a la de los cables (o accesorios).
- Antes de cada uso, compruebe que los aislamientos de los cables, carcasa y accesorios estén en perfecto estado.
 Todo elemento que presente desperfectos en el aislamiento (aunque sean menores) debe enviarse a reparar o desecharse.
- No utilice el instrumento en redes de tensiones o categorías superiores a las mencionadas.
- No utilice el instrumento si parece estar dañado, incompleto o mal cerrado.
- Al extraer e insertar la tarjeta SD, asegúrese de que el instrumento está desenchufado y apagado.
- Utilice sistemáticamente protecciones individuales de seguridad.
- Al manejar cables y pinzas cocodrilo, mantenga sus dedos detrás de la protección.
- Si el instrumento está mojado, séquelo antes de conectarlo.
- Toda operación de reparación de avería o verificación metrológica debe efectuarse por una persona competente y autorizada.

1.1. ESTADO DE SUMINISTRO

Figura	1
--------	---

Núm.	Descripción	PEL51	PEL52
1	PEL51 o PEL52	1	1
2	Cables de seguridad, 3 m, banana-banana, recto-recto.	1 rojo 1 negro	1 rojo, 1 azul, 1 negro
3	Pinzas cocodrilo.	1 roja 1 negra	1 roja, 1 azul, 1 negra
4	Sensor de corriente MiniFlex MA194 250 mm.	1	0
5	Cable de alimentación.	1	1
6	Adaptador C8 macho / 2 tomas banana macho	1	1
7	Tarjeta SD 8 GB (en el instrumento).	1	1
8	Adaptador de tarjeta SD-USB.	1	1
9	Informe de prueba.	1	1
10	Guía de inicio rápido en varios idiomas.	1	1
(1)	Ficha de seguridad en varios idiomas del instrumento.	1	1
12	Fichas de seguridad en varios idiomas de los sensores de corriente y cables.	2	2
13	Bolsa de transporte	1	0

Tabla 1

1.2. ACCESORIOS

- MiniFlex MA194 250 mm
- MiniFlex MA194 350 mm
- MiniFlex MA194 1.000 mm
- Pinza MN93
- Pinza MN93A
- Pinza C193
- Pinza MINI 94
- AmpFlex[®] A193 450 mm
- AmpFlex[®] A193 800 mm
- Adaptador BNC
 Outhous Data V
- Software DataView

1.3. RECAMBIOS

- Cable de alimentación 1,8 m
- Adaptador C8 macho / 2 tomas banana macho
- Juego de 2 cables de seguridad, negro y rojo, banana-banana recto-recto y de 2 pinzas cocodrilo (para el PEL51).
- Juego de 3 cables de seguridad, negro, rojo y azul, banana-banana recto-recto y de 3 pinzas cocodrilo (para el PEL52).

Para los accesorios y los recambios, visite nuestro sitio web: <u>www.chauvin-arnoux.com</u>

1.4. CARGA DE LA BATERÍA

Antes del primer uso, cargue completamente la batería a una temperatura entre 0 y 40 °C.

Conecte el adaptador C8/banana entre los bornes V1 y N
 Conecte el cable de alimentación al adaptador y a la red eléctrica.

El instrumento se enciende.

El símbolo IIII indica que se está cargando. Cuando se enciende en modo fijo, la batería está cargada.

La carga de una batería descargada tarda unas 5 horas.

Figura 2

90 ... 690 V 50 ... 60 Hz

2.1. DESCRIPCIÓN

PEL: Power & Energy Logger (registrador de potencia y energía)

Los PEL51 y PEL52 son registradores de potencia y energía monofásicas y bifásicas fáciles de usar. Tienen una gran pantalla LCD retroiluminada y una tarjeta SD para almacenar las medidas.

El PEL permite realizar registros de tensión, corriente, potencia y energía en las redes de distribución de CA (50 Hz o 60 Hz). Está diseñado para funcionar en entornos de 600 V categoría III o inferior.

De tamaño compacto, se integra en muchos cuadros de distribución. Su carcasa es hermética y resistente a los golpes.

Funciona con la red eléctrica y tiene una batería de reserva que se recarga directamente de la red durante las medidas.

Le permitirá realizar las siguientes medidas y cálculos:

- Medidas de tensión fase-neutro y fase-fase (PEL52) de hasta 600 V.
- Medidas de corriente de hasta 25.000 A con distintos sensores de corriente.
- Reconocimiento automático de los distintos tipos de sensores de corriente.
- Medidas de frecuencia.
- Medidas de potencia activa (P (W), fundamental reactiva Qf (var) y aparente S (VA).
- Medidas de potencia activa fundamental Pf (W), de potencia no-activa N (var) y de potencia distorsionante D (var) con el software de aplicación PEL Transfer.
- Medidas de energía activa en fuente y carga (Wh), reactiva 4 cuadrantes (varh) y aparente (VAh).
- Contador de energía total.
- Cálculo del cos φ (DPF) y del factor de potencia (PF).
- Medida de ángulos de fase.
- Cálculo de las agregaciones de los valores de 1 minuto a 1 hora.
- Almacenamiento de los valores en una tarjeta SD, SDHC o SDXC.
- Comunicación por WiFi.
- Software PEL Transfer para la recuperación de datos, la configuración y comunicación en tiempo real con un PC.
- Conexión a DataViewSync[™] (servidor IRD) para comunicar entre redes privadas.

Figura 3

2.3. REGLETA DE BORNES

i

Antes de conectar un sensor de corriente, consulte su ficha de seguridad o manual de instrucciones que se puede descargar.

2.5. RANURA TARJETA SD

i

El PEL no debe utilizarse cuando la ranura de la tarjeta SD está abierta.

Antes de abrir la ranura de la tarjeta SD, desenchufe el instrumento y apáguelo.

Para desbloquear la tapa protectora, gire el tornillo un cuarto de vuelta.

Figura 6

Abra la tapa protectora para acceder a la tarjeta SD. Para extraer la tarjeta, presiónela.

Para insertar la tarjeta, empújela en el sentido indicado hasta oír un «clic».

2.6. MONTAJE

Como registrador, el PEL está pensado para ser instalado durante un periodo de tiempo bastante largo en una sala técnica.

El PEL debe colocarse en una sala bien ventilada donde la temperatura no debe superar los valores especificados en el § 6.5.

El PEL puede montarse en una superficie ferromagnética vertical y plana mediante los imanes incorporados en la carcasa.

El fuerte campo magnético de los imanes puede dañar sus discos duros o dispositivos médicos.

2.7. FUNCIONES DE LAS TECLAS

Tecla	Descripción
\square	Botón de Encendido/Apagado Permite encender o apagar el instrumento con una pulsación larga.
	El instrumento no se puede apagar cuando se está realizando un registro o está en espera.
()	Tecla Selección Permite iniciar o detener un registro, y elegir el modo WiFi.
►◀▲▼	Teclas de navegación Permiten configurar el instrumento y navegar los datos mostrados.
~	Tecla de validación En el modo Configuración, permite seleccionar un parámetro a modificar. En los modos de visualización de medida y potencia, permite visualizar los ángulos de fase. En el modo selección, permite iniciar o detener un registro. Permite también seleccionar el tipo de WiFi.

Tabla 2

Al pulsar cualquier tecla se enciende la retroiluminación de la pantalla durante 3 minutos.

2.8. DISPLAY LCD

Figura 7

2.8.1. ICONOS DE ESTADO.

Icono	Descripción
	Indica el estado de carga de la batería. Cuando parpadea, hay que cargar la batería.
	Indica lo llena que está la tarjeta de memoria. Cuando parpadea, la tarjeta SD está ausente o bloqueada.
REC	Cuando parpadea, es que hay un registro programado. Cuando se enciende en modo fijo, significa que hay un registro en curso.
OL	Indica que un valor está fuera de rango y por lo tanto no puede ser mostrado. O que los dos sensores de corriente son diferentes (PEL52).
((•))	Indica que el WiFi en punto de acceso está activo. Cuando parpadea, es que se está transmitiendo.
(ír·	Indica que el WiFi en rúter está activo. Cuando parpadea, es que se está transmitiendo.
P	Indica que el auto apagado del instrumento está desactivado. Parpadea, cuando el aparato funciona sólo con la energía de la batería, es decir, cuando la carga de la batería a partir de los bornes de medida está desactivada.
	Indica que el instrumento está controlado de forma remota (por un PC, smartphone o una tablet).

Tabla 3

2.8.2. ICONOS DE MODO

Icono	Descripción				
	Modo de medida (valores instantáneos).				
W	Aodo potencia y energía.				
	Modo máximo.				
	Modo información.				
	Modo configuración.				

Tabla 4

2.9. TARJETA DE MEMORIA

i

El PEL acepta tarjetas SD, SDHC y SDXC formateadas en FAT32, hasta 32 GB de capacidad. Una tarjeta SDXC de 64 GB tendrá que ser formateada a 32 GB en un PC.

El PEL se suministra con una tarjeta SD formateada. Si desea instalar una nueva tarjeta SD:

- Quite la tapa de elastómero marcada S² (véase § 2.5).
- Presione la tarjeta SD que se encuentra en el instrumento y sáquela.

No extraiga la tarjeta SD si se está registrando.

- Compruebe que la nueva tarjeta SD no está bloqueada.
- Es preferible formatear la tarjeta SD en el instrumento con el software PEL Transfer, o si no puede formatéela con un PC.
- Inserte la nueva tarjeta y empújela hasta el tope.
- Vuelva a colocar la tapa protectora de elastómero.

El PEL debe configurarse antes de cualquier registro. Los distintos pasos de esta configuración son:

- Establecer un conexión WiFi con el PC (para utilizar el software PEL Transfer véase § 5).
- Elegir la conexión según el tipo de red de distribución.
- Conecte el (o los) sensor(es) de corriente.
- Definir la corriente nominal primaria según el sensor de corriente utilizado.
- Elegir el periodo de agregación.

Esta configuración se realiza en el modo Configuración (véase § 3.2) o con el software PEL Transfer.

Para evitar cambios accidentales, el PEL no se puede configurar durante un registro o si hay un registro pendiente.

3.1. PUESTA EN MARCHA Y PARO DEL INSTRUMENTO

3.1.1. PUESTA EN MARCHA

i

- Conecte el PEL a la red entre los bornes V1 y N, se encenderá automáticamente. De lo contrario, pulse la tecla de Encendido/ Apagado hasta que el instrumento se encienda.
- Si el instrumento muestra LOCK, significa que el botón de selección está bloqueado. Deberá utilizar el software PEL Transfer (véase § 5) para desbloquearlo.

La batería empieza automáticamente a cargarse cuando el PEL está conectado a una fuente de tensión entre los bornes V1 y N. La autonomía de la batería es de aproximadamente una hora cuando está completamente cargada. Así el instrumento puede seguir funcionando durante interrupciones cortas del suministro eléctrico.

3.1.2. AUTO APAGADO

Por defecto, el instrumento funciona en modo permanente (aparecerá el símbolo •).

Cuando el instrumento funciona con batería, puede elegir que se apague automáticamente tras un periodo de tiempo sin usar el teclado y si no hay ningún registro en curso. Este tiempo se definirá en PEL Transfer (véase § 5). Esto permite ahorrar la batería.

3.1.3. APAGADO

No puede apagar el PEL mientras siga conectado a una fuente de alimentación o siga registrando o en modo en espera. Este funcionamiento es una precaución destinada a evitar cualquier paro involuntario de un registro por el usuario.

Para apagar el PEL:

- Desconecte el PEL.
- Pulse la tecla de Encendido/Apagado hasta que el instrumento se apague.

3.1.4. FUNCIONAMIENTO CON BATERÍA / CALIBRACIÓN

En algunas aplicaciones, como las medidas en generadores de baja potencia de salida (calibrador, autotransformador, transformador de medida de tensión, etc.), la red como fuente de alimentación del instrumento puede interferir en la medida o impedir el funcionamiento del instrumento.

Para que el instrumento funcione sólo con la batería, pulse las teclas \mathbf{c} y \mathbf{b} . El símbolo **P** parpadeará.

Use la misma combinación de teclas para volver a utilizar la alimentación de red. Tras apagarlo, el instrumento se reiniciará con la alimentación de red activada.

3.2. CONFIGURACIÓN DEL INSTRUMENTO

Se pueden configurar algunas funciones principales directamente en el instrumento. Para una configuración completa, utilice el software PEL Transfer (véase § 5) una vez establecida la comunicación WiFi.

Para entrar en el modo Configuración con el instrumento, pulse las teclas ◄ o ► hasta que seleccionar el símbolo

Si el PEL se está configurando con el software PEL Transfer, no se puede entrar en el modo Configuración en el instrumento. En este caso, cuando se intenta configurar, el instrumento indica **LOCK**.

3.2.1. TIPO DE RED (PEL52)

Para cambiar la red, pulse la tecla -

- 1P-2W1I: Monofásica, 2 hilos con un sensor de corriente
- 1P-3W2I: Monofásica, 3 hilos (2 tensiones en fase) con dos sensores de corriente
- 2P-3W2I: Bifásica, 3 hilos (2 tensiones en oposición de fase) con dos sensores de corriente

3.2.2. WIFI

Pulse la tecla ▼para pasar a la pantalla siguiente.

Para que el WiFi pueda funcionar, la batería debe estar suficientemente cargada (IIII) o IIII).

Pulse la tecla — para activar o desactivar el WiFi. Si la batería está demasiado baja, el instrumento lo indica y la activación es imposible.

Para establecer una conexión WiFi

Active el WiFi.

i

Este enlace le permite conectarse a su PC y luego a cualquier otro dispositivo, como un smartphone o una tablet. El procedimiento de conexión se detalla a continuación.

1) Procedimiento de conexión en WiFi en punto de acceso

La primera conexión debe realizarse en modo WiFi en punto de acceso.

- Pulse la tecla Selección C una primera vez. El instrumento muestra START REC. PUSH ENTER TO START RECORDING (Para iniciar un registro, pulse la tecla Enter -). Pulse una segunda vez la tecla C y el instrumento indicará (•) WIFI ST. PUSH ENTER FOR WIFI ST (Para activa el WiFi rúter, pulse la tecla Enter -),

- o **WIFI OFF. PUSH ENTER FOR WIFI OFF** (Para desactivar el WiFi, pulse la tecla Enter —), o **WIFI AP. PUSH ENTER FOR WIFI AP** (Para desactivar el WiFi en punto de acceso, pulse la tecla Enter —). -

(L)

Cambie con la tecla — para obtener (••) WIFI AP, La dirección IP de su instrumento, indicada en el menú información, es 192.168.2.1 3041 UDP.

Conecte su PC al WiFi del instrumento. En la barra de estado de Windows, haga clic en el símbolo de conexión. En la lista, seleccione su instrumento.

- Inicie el software de aplicación PEL Transfer (véase § 5).
- Seleccione Instrumento, Agregar un instrumento, PEL51 o PEL52, en WiFi punto de acceso.

Esta conexión al software PEL Transfer permite:

- Configurar el instrumento.
- Acceder a las medidas en tiempo real.
- Descargar los registros.

- Cambiar el nombre del SSID en punto de acceso y protegerlo con una contraseña.
- Introducir el SSID y la contraseña de una red WiFi a la que el instrumento se podrá conectar.
- Introducir la contraseña de DataViewSyncTM (servidor IRD) que permite un acceso del instrumento entre distintas redes privadas. Si pierde su nombre de usuario y contraseña, puede volver a la configuración de fábrica (véase § 3.2.5).

2) Procedimiento de conexión en WiFi (continuación)

Una vez que su instrumento está conectado al punto de acceso, puede conectarlo en WiFi rúter. Esto le permitirá acceder a su instrumento desde un smartphone o tablet, o desde DataViewSyncTM (servidor IRD) a través de una red pública o privada.

Configuración de la conexión en WiFi rúter

 En PEL Transfer, vaya al menú de configuración
 pestaña
 Comunicación para introducir el nombre de la red (SSID) y la contraseña en la casilla Conectar a un rúter WiFi, puerto 3041, protocolo UDP. El SSID es el nombre de la red en el que usted quiere conectarse. Puede ser la red de su smartphone o tablet en modo de punto de acceso.

Configurar						×	
General Comunicación M	edida Sensor de corriente R	egistro Contadores					
Wi-Fi directo							
SSID:	PEL52_258951ABC	(32 caracteres ASCII máx.)					
Autenticación:	Abrir 🗸						
							El puerto 80 está prohibido
 Conexión wifi al enrutado 	or						Está reservado para la
SSID: Router w	ifi	(32 caracteres ASCII máx.)	Puerto:	3041	(1 a 65.535)		interfaz de usuario remota.
Contraseña: 6241838	6	(64 caracteres ASCII máx.)	Protocolo:	O UDP	◯ TCP		
– DataViewSync™ (Servido ☑ Activar	r IRD)						
Contraseña	a: A35327515253	(8 a 64 caracteres ASCII)					
Número de serie	e: 258951ABC						
Los caracteres ASCII son	: AZ, az, 0-9, , ", "! # \$% '(* +, -, / :; <=>? @ [\] ^ _ `{ } ~"					
			ОК	Annuler	Aide	:	
		Figura 13					

- Haga clic en Aceptar para cargar la configuración en el instrumento.
- Pulse 2 veces la tecla Selección C del instrumento, luego 2 veces la tecla para cambiar a 🛠 WIFI ST. Su instrumento se conecta a esta red WiFi. Se pierde la conexión WiFi del punto de acceso.

Una vez que el PEL está conectado a la red, puede encontrar su dirección IP en el modo de información

16

En PEL Transfer, cambie la conexión en Ethernet (LAN o WiFi) e introduzca la dirección IP de su instrumento, puerto 3041, protocolo UDP.

Esto permite conectar varios PEL a la misma red.

Asistente para agregar un instrumento	×
¿Cómo desea comunicar entre su ordenador y el instrumento? Este asistente le ayuda a agregar un instrumento a su red PEL.	
Seleccione la opción que mejor describa el tipo de conexión usada: El instrumento está conectado localmente a su ordenador por: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor describa el tipo de conexión usada: Image: Seleccione la opción que mejor de conexión que mejor de co	
El instrumento está conectado a una red por: ○ Ethernet (Wifi) ○ DataViewSync™ (Servidor IRD)	
Haga dic en "Siguiente" para continuar.	
< Précédent Suivant > Annuler Aide	

Figura 14

Configuración de la conexión a DataViewSync™ (servidor IRD)

- Para conectar el PEL a DataViewSync[™], debe estar en 🛜 WIFI ST y la red a la que está conectada debe tener acceso a Internet para poder acceder a DataViewSync[™].
- Vaya a PEL Transfer, luego en el menú configuración , pestaña Comunicación. Active DataViewSync[™] e introduzca la contraseña que se utilizará para iniciar la sesión posteriormente.

Configurar X							
General Comuni	icación Med	dida Sensor de corriente	Registro	Contadores			
Wi-Fi directo							
	SSID:	PEL52_258951ABC		(32 caracteres ASCII máx.)			
Aut	enticación:	Abrir ~					
- Conexión wifi	al enrutador						
SSID:	Router wif	ì	(32	caracteres ASCII máx.)	Puerto:	3041 (1	a 65.535)
Contraseña:	62418386		(64	caracteres ASCII máx.)	Protocolo:	OUDP () TCP
DataViewSync	™ (Servidor	IRD)					
Activar		,					
	Contraseña:	A35327515253		(8 a 64 caracteres ASCII)			
Núme	ero de serie:	258951ABC					
	ASCII cont	A7 >7 0.0 == == = = # ć9	·/^ * + -	(
LUS Cal acteres	AGCII SUIL	M2, 82, 0-5, , , ; # \$/	• U · +,,				
					ОК	Annuler	Aide

Figura 15

3.2.3. CORRIENTE NOMINAL PRIMARIA

Conecte el (o los) sensor(es) de corriente. Pulse la tecla ▼para pasar a la pantalla siguiente.

Figura 16

El sensor de corriente es detectado automáticamente por el instrumento. Para el PEL52, si dos sensores de corriente están conectados, deben ser idénticos.

Para los sensores AmpFlex[®] o MiniFlex , pulse la tecla ← para elegir 300 o 3.000 A.

Las corrientes nominales de los sensores de corriente son las siguientes:

Sensor	Corriente nominal	Selección de la ganancia	Número de vueltas
Pinza C193	1.000 A	×	×
AmpFlex [®] A193 MiniFlex MA194	300 o 3.000 A	4	1, 2 o 3. a configurar en PEL Transfer
Pinza MN93A rango 5 A	5 A	a configurar en PEL Transfer	×
Pinza MN93A rango 100 A	100 A	×	×
Pinza MN93	200 A	×	×
Pinza MINI 94	200 A	×	×
Adaptador BNC	1.000 A	a configurar en PEL Transfer	×

Tabla 5

3.2.4. PERIODO DE AGREGACIÓN

Pulse la tecla ▼para pasar a la pantalla siguiente.

Para cambiar el periodo de agregación, pulse la tecla 🛁: 1, 2, 3, 4, 5 a 6, 10, 12, 15, 20, 30 o 60 minutos.

3.2.5. RESET

Pulse la tecla ▼para pasar a la pantalla siguiente.

Para restablecer la configuración WiFi por defecto (WiFi con punto de acceso, sin contraseña), pulse la tecla — El instrumento pide una confirmación antes de realizar el reset. Pulse la tecla — para confirmar y cualquier otra para cancelar.

3.3. INTERFAZ DE USUARIO REMOTA

La interfaz de usuario remota se realiza desde un PC, una tableta o un smartphone.

Permitirá:

- consultar la información del instrumento,
- establecer una conexión en WiFi rúter,
- sincronizar la fecha y hora,
- programar un registro.

Existen varias versiones de la interfaz de usuario remota en función de la versión de firmware de su instrumento. Y estas diferentes interfaces tienen diferentes funcionalidades.

- Active el WiFi en el instrumento. La interfaz de usuario remota puede funcionar con una conexión WiFi con punto de acceso
 (•) o una conexión WiFi con rúter ^{*}, pero no a través de DataViewSync [™] (servidor IRD).
- En el PC, la tableta o el smartphone, conéctese a la red WiFi de su instrumento (véase § 3.2.2).
- En un navegador Internet, introduzca http://direccion_IP_instrumento.
 Para una conexión WiFi con punto de acceso (M), <u>http://192.168.2.1</u>
 Para una conexión WiFi con rúter ?, la dirección se indica en el menú de información (véase § 3.4).

Aparecerá entonces la siguiente pantalla (que difiere según el modelo del instrumento):

Figura 20

Para introducir el SSID y la contraseña, haga clic en Edit.

PEL52	Wi-Fi Settings		
	SSID Router wifi		SSID
	Password 62418386		Contraseña
	Submit		Enviar
	Quit		Salir

Figura 21

Cumplimente los campos y luego haga clic en Submit.

Pulsando el segundo botón, podrá consultar las medidas:

		WI-FI	RMS	NFO RE	ECORDI	NG			Ð
11 :	1005.9	A	12 :	1006.7	A				
V1-N :	40.9	V	V2-N :	54.2	V	U12 :	92.9	V	
P1 :	41571.6	w	P2 :	54688.2	w	PT:	96259.8	w	
Q1 :	4885.2	var	Q2 :	670.7	var	QT:	-4835.0	var	
S1 :	40832.8	VA	S 2 :	54662.1	VA	ST:	96606.4	VA	
F:	60.3	Hz							

Figura 22

El tercer botón le permitirá consultar la información del instrumento:

PEL52	WI-FI RMS	INFO RECORDING	(b)
	10: 202	50:25 ⁵⁻⁰²⁻²⁷	
	Location :		Ubicación Número de serie
	Serial Number :	258951ABC	Nombre
	Name :	PEL52	Varaián dal firmwara
	Firmware Version :	2.34	version dei inniware
	Hookup :	2P-3W2I (split phase)	Tipo de red Sensor de corriente
	Range :	 1000	Rango de medida
	Synchroniz	e date and hour	Sincronizar la fecha y la hora
	Figu	ra 23	

Pulse Synchronize date and hour para sincronizar la fecha y hora de su instrumento con el PC, la tablet o el smartphone.

El cuarto botón le permitirá consultar la información referente al registro en curso o al último registro.

PEL52	WI-FI	RMS INFO RECORDING	
	Recording Status :	Inactive	Estado del registro Nombre de la sesión
	Session Name :	ESSAI 02	Inicio del registro
	Recording Start :	1/1/2024 1:00:00	Fin del registro
	Recording End :	8/10/2024 23:06:01	Duración del registro
	Recording Duration :	221:22:6:1 (days:h:min:s)	Registro de datos "1s"
	Record 1-s Data :	Yes	Registro de datos TS.
			Estado de la tarjeta SD
	SD-Card Status :	Space available for pending or active recording	
	SD-Card Capacity :	15203 (MBytes)	Capacidad de la tarjeta SD
	SD-Card Free Space :	12629 (MBytes)	Espacio libre en la tarjeta SD
		Program recording	Programar un registro.
		Figura 24	

Pulse Program recording para programar un registro.

PEL52	Session Settings	(b)
	Session name Main distribution panel Aggregation period : <u>1 min </u>	Nombre de la sesión Periodo de agregación Iniciar ahora
	Start now	Fecha y hora de inicio Fecha y hora de fin
	Recording duration : Days Hours Minutes 0 0 0 15 0 Activate 1 second trends recording mode	Duración del registro Días Horas Minutos Activar el registro de datos "1s".
	Program recording Quit	Iniciar el registro Salir

Figura 25

3.4. INFORMACIÓN

Para entrar en el modo Información, pulse la tecla ◄ o ► hasta que se seleccione el símbolo

III P

((•))

 \sim

Con las teclas ▲ y ▼, puede desplazarse por la información del instrumento:

Tipo de red

W

Ţ

!E

30

PRIM

L

Α

 Corriente nominal primaria y número de vueltas: 1t, 2t o 3t (a definir con PEL Transfer para los sensores de corriente de tipo Flex)

Periodo de agregación

 Fecha Año, mes, día

 Hora Hora, minuto, segundo

- Pinza C193: 1.000 A
- AmpFlex[®]o MiniFlex: 300 o 3.000 A.
- Pinza MN93A rango 5 A: 5 A modificable
- Pinza MN93A rango 100 A: 100 A
- Pinza MN93: 200 A
- Pinza MINI 94: 200 A
- Adaptador BNC: 1.000 A modificable

Dirección IP (móvil)

 Versión del software y número de serie móvil.

Una vez configurado el instrumento, puede utilizarlo.

4.1. REDES DE DISTRIBUCIÓN Y CONEXIONES DEL PEL

Conecte los sensores de corriente y los cables de medida de tensión a su instalación en función del tipo de red de distribución.

Compruebe siempre que la flecha del sensor de corriente está dirigida hacia la carga. Así el ángulo de fase será correcto para las medidas de potencia y las demás medidas que dependen de la fase. De lo contrario, el software PEL Transfer permite invertir la fase de un sensor de corriente en determinadas condiciones.

4.1.1. MONOFÁSICA 2 HILOS: 1P-2W1I

i

Para las medidas de monofásica 2 hilos:

- Conecte el cable de medida N al conductor del neutro.
- Conecte el cable de medida V1 al conductor de la fase L1.
- Conecte el sensor de corriente I1 al conductor de la fase L1.

Figura 26

4.1.2. MONOFÁSICA 3 HILOS, 2 CORRIENTES: 1P-3W2I (PEL52)

Para las medidas de monofásica 3 hilos con 2 sensores de corriente:

- Conecte el cable de medida N al conductor del neutro.
- Conecte el cable de medida V1 al conductor de la fase L1-I1.
- Conecte el cable de medida V2 al conductor de la fase L1-I2.
- Conecte el sensor de corriente I1 al conductor de la fase L1-I1.
- Conecte el sensor de corriente I2 al conductor de la fase L1-I2.

Figura 27

4.1.3. BIFÁSICA 3 HILOS (BIFÁSICA A PARTIR DE UN TRANSFORMADOR CON TOMA INTERMEDIA): 2P-3W2I (PEL52)

Para las medidas de bifásica 3 hilos con 2 sensores de corriente:

- Conecte el cable de medida N al conductor del neutro.
- Conecte el cable de medida V1 al conductor de la fase L1.
- Conecte el cable de medida V2 al conductor de la fase L2.
- Conecte el sensor de corriente I1 al conductor de la fase L1.
- Conecte el sensor de corriente l2 al conductor de la fase L2.

Figura 28

4.2. REGISTRO

Para iniciar un registro:

- Compruebe que haya una tarjeta SD (no bloqueada y con suficiente espacio) en el PEL.
- Pulse la tecla Selección C una primera vez. El instrumento muestra START REC. PUSH ENTER TO START RECORDING (Para iniciar un registro, pulse la tecla Enter). Si muestra INSERT SD CARD (Inserte una tarjeta SD), es que no hay tarjeta SD en el instrumento. Si muestra SD CARD WRITE PROTECT (Tarjeta SD con protección contra escritura), es que está bloqueada. En estos dos casos, los registros no se pueden llevar a cabo.
- Acepte con la tecla ← . El símbolo REC parpadeará.

Para detener el registro, pulse la tecla Selección C. El instrumento muestra STOP REC. PUSH ENTER TO STOP RECORDING (Para detener el registro, pulse la tecla Enter) El símbolo REC desaparecerá.

Se pueden gestionar los registros a partir del PEL Transfer (véase § 5).

En modo registro, la configuración del instrumento no se puede modificar. Para activar o desactivar el WiFi, pulse dos veces la tecla **Selección**, luego en la tecla \leftarrow para elegir el **WIFI AP** (\bigcirc), el **WIFI ST** ($\widehat{\Rightarrow}$ o sin WiFi.

4.3. MODOS DE VISUALIZACIÓN DE LOS VALORES MEDIDOS

El PEL consta de 3 modos de visualización de medida, \bigcirc , \bigcirc , \bigcirc , \bigcirc , representados por los iconos en la parte superior del display. Para pasar de un modo a otro, utilice las teclas \triangleleft o \triangleright .

Se puede acceder a las visualizaciones en cuanto se enciende el PEL, pero los valores están a cero. En cuanto hay una presencia de tensión o corriente en las entradas, los valores se actualizan.

4.3.1. MODO DE MEDIDA

Este modo permite visualizar los valores instantáneos: tensión (V), corriente (I), potencia activa (P), potencia reactiva fundamental (Qf), potencia aparente (S), frecuencia (f), factor de potencia (PF), desfase (φ).

La visualización depende de la red configurada. Pulse la tecla ▼ para pasar a la siguiente pantalla.

Monofásica 2 hilos (1P-2W1I)

Si no se detecta el sensor de corriente, todas las magnitudes dependientes de la corriente (corriente, ángulo, potencias, FP) no se definen (visualización de - - -).

Monofásica 3 hilos 2 corrientes (1P-3W2I) y bifásica 3 hilos (2P-3W2I) (PEL52)

4.3.2. MODO ENERGÍA

Este modo muestra la energía: energía activa (Wh), energía reactiva (varh), energía aparente (VAh).

Las energías mostradas son las energías totales, de la fuente o de la carga. La energía depende de la duración.

Pulse la tecla ▼ para pasar a la siguiente pantalla. Se desplazará sucesivamente a través de:

- Ep+: Energía activa total generada (por la fuente) en Wh
- Ep-: Energía activa total consumida (por la carga) en Wh
- Eq1: Energía reactiva consumida (por la carga) en el cuadrante inductivo (cuadrante 1) en varh.
- Eq2: Energía reactiva generada (por la fuente) en el cuadrante capacitivo (cuadrante 2) en varh.
- Eq3: Energía reactiva generada (por la fuente) en el cuadrante inductivo (cuadrante 3) en varh.
- Eq4: Energía reactiva consumida (por la carga) en el cuadrante capacitivo (cuadrante 4) en varh.
- Es+: Energía aparente total generada (por la fuente) en VAh
- Es-: Energía aparente total consumida (por la carga) en VAh.

El aparato no muestra el símbolo «h». Por lo tanto leerá «W» en vez de «Wh».

4.3.3. MODO MÁXIMO

Este modo permite visualizar los valores máximos: valores agregados máximos de las medidas y de la energía.

Según la opción seleccionada en el PEL Transfer, puede tratarse de los valores agregados máximos para el registro en curso o de los valores agregados del último registro, o de los valores agregados máximos desde el último reset.

Monofásica 2 hilos (1P-2W1I)

Suma de las potencias en la carga en L1 y L2.

Qf

Suma de las potencias en la fuente L1 y L2.

5.1. SOFTWARE PEL TRANSFER

5.1.1. FUNCIONALIDADES

El software PEL Transfer permite:

- Conectar el instrumento al PC mediante WiFi.
- Configurar el instrumento: para dar un nombre al instrumento, seleccionar el tiempo hasta el auto apagado, seleccionar la actualización de los valores máximos, bloquear la tecla Selección del instrumento, impedir la carga de batería cuando se realiza una medida, establecer una contraseña en la configuración del instrumento, ajustar la fecha y la hora, formatear la tarjeta SD, etc.

Cuando se apaga el instrumento, el botón de **Selección** C deja de estar bloqueado y la alimentación de los bornes de medida deja de estar bloqueada.

- Configurar la comunicación entre el instrumento, el PC y la red.
- Configurar la medida: elegir la red de distribución.
- Configurar los sensores de corriente: la relación de transformación y el número de vueltas en su caso.
- Configurar los registros: elegir sus nombres, su duración, su fecha de inicio y fin, el periodo de agregación.
- Resetear los contadores de energía.

El software PEL Transfer permite también abrir los registros, descargarlos en el PC, exportarlos a una hoja de Excel, ver las curvas correspondientes, crear informes e imprimirlos.

Asimismo permite actualizar el firmware del instrumento cuando está disponible una nueva actualización.

5.1.2. INSTALACIÓN DE PEL TRANSFER

1. Descargue la última versión de PEL Transfer desde nuestro sitio web: <u>www.chauvin-arnoux.com</u>

Entre en la sección **Soporte**, luego realice una búsqueda en **PEL Transfer**. Descargue el software en su PC. Inicie **setup.exe**. A continuación, siga las instrucciones de instalación.

Debe disponer de los derechos de administrador en su PC para instalar el software PEL Transfer.

 Aparece un mensaje de advertencia similar al de a continuación. Haga clic en Aceptar. Los PEL 51 y 52 no disponen de conexión USB, por lo que no hay que tener en cuenta este mensaje automático que se utiliza para otros instrumentos de la gama PEL.

DataView - InstallShield Wizard			
٩	No conecte el USB hasta que la instalación de los drivers y el software DataView haya terminado. Si el Sentinel esta conectado al ordenador ahora, entonces desconéctelo del ordenador.		
	ОК		
Figura 29			

i

i

La instalación de los driver puede tardar un poco. Windows puede incluso indicar que el programa ya no contesta, aunque siga funcionando. Espere a que finalice.

3. Cuando haya finalizado la instalación de los driver, el cuadro de diálogo Instalación realizada aparece. Haga clic en Aceptar.

- 4. Luego aparece la ventana Install Shield Wizard completed. Haga clic en Finalizar.
- 5. En su caso, reinicie el ordenador.

Se ha añadido un acceso directo a su escritorio Ima o en el directorio DataView.

Ya puede abrir el PEL Transfer y conectar su PEL al ordenador.

Para obtener información contextual sobre el uso de PEL Transfer, remítase a la ayuda del software.

5.2. APLICACIÓN PEL

i

La aplicación Android tiene una parte de las funcionalidades del software PEL Transfer. Le permite conectarse a su instrumento de forma remota.

Busque la aplicación introduciendo PEL Chauvin Arnoux. Instale la aplicación en su Smartphone o tablet.

La aplicación consta de 3 pestañas.

umento por DataViewSync™ (servidor IRD). Introduzca el número de serie del PEL (véase § 3.4) y la contraseña (información disponible en PEL Transfer), luego conéctese.

permite mostrar las medidas en forma de un diagrama de Fresnel.

Arrastre la pantalla hacia la izquierda para obtener los valores de tensión, corriente, potencia, energía, etc.

Dermite:

- Configurar los registros: seleccionar sus nombres, su duración, su fecha de inicio y fin, el periodo de agregación, el registro o no de valores «1s».
- Configurar la medida: elegir la red de distribución, la corriente primaria y el periodo de agregación.
- Configurar la comunicación entre el instrumento y el Smartphone o tablet.
- Configurar el instrumento: configurar la fecha y hora, formatear la tarjeta SD y bloquear o desbloquear la tecla Selección 2.

6.1. CONDICIONES DE REFERENCIA

Parámetro	Condiciones de referencia
Temperatura ambiente	23 ± 2 °C
Humedad relativa	45 a 75% HR
Tensión	Sin componente CC
Corriente	Sin componente CC
Frecuencia de red	50 Hz ± 0,1 Hz y 60 Hz ± 0,1 Hz
Armónicos	< 0,1%
Precalentamiento	El instrumento debe estar encendido desde al menos una hora.
Mada aamún	La entrada del neutro y la carcasa están conectadas a tierra.
	El instrumento funciona con batería.
Campo magnético	0 A/m CA
Campo eléctrico	0 V/m CA

Tabla 6

6.2. CARACTERÍSTICAS ELÉCTRICAS

Las incertidumbres están expresadas en % de la lectura (R) y un offset: $\pm \, (a\% \; R + b)$

6.2.1. ENTRADAS DE TENSIÓN

Rango de funcionamiento hasta 600 Vrms para las tensiones fase-neutro y 1200 Vrms para las tensionesfase-fase desde 45 hasta 65 Hz.

Las tensiones fase-neutro inferiores a 2 V y las tensiones entre fases inferiores a 3,4 V se fijan a cero.Impedancia de entrada903 kΩ cuando el instrumento funciona con batería.
Cuando el instrumento es alimentado por la tensión en los bornes, la impedancia en L1 es dinámica y
la fuente de corriente debe ser capaz de suministrar hasta 100 mA a 90 V y 500 mA a 660 V.

Sobrecarga permanente 660 V.

Más allá de 690 V, el instrumento muestra el símbolo OL.

6.2.2. ENTRADAS DE CORRIENTE

Las salidas procedentes de los sensores de corriente son tensiones.		
Rango de funcionamiento	0,5 mV a 1,7 Vpico	
Factor de pico	$\sqrt{2}$ excepto sensores de corriente AmpFlex [®] / MiniFlex ver Tabla 16.	
Impedancia de entrada	1 M Ω (salvo sensores de corriente AmpFlex [®] / MiniFlex) 12,4 k Ω (sensores de corriente AmpFlex [®] / MiniFlex)	
Sobrecarga máxima	1,7 V	

6.2.3. INCERTIDUMBRE INTRÍNSECA (SIN SENSORES DE CORRIENTE)

Con:

- R: valor visualizado.
- I nom: corriente nominal del sensor de corriente para una salida de 1 V, ver Tabla 15 y Tabla 16.
 P_{nom} y S_{nom}: potencias activa y aparente para V = 230 V, I = Inom y PF = 1.
 Qf_{nom}: potencia reactiva para V = 230 V, I = Inom y sin φ = 0,5.

6.2.3.1. Especificaciones del PEL

Cantidades	Rango de medida	Incertidumbre intrínseca
Frecuencia (f)	[45 Hz; 65 Hz]	± 0,1 Hz
Tensión fase-neutro (V_1 , V_2)	[10 V; 660 V]	± 0,2% R ± 0,2 V
Tensión fase-fase (U ₁₂) (PEL52 únicamente)	[20 V; 1.200 V]	± 0,2% R ± 0,4 V
Corriente (I_1, I_2)	[0,2% I _{nom} ; 120% I _{nom}]	$\pm 0,2\% \text{ R} \pm 0,02\% \text{ I}_{nom}^{(1)}$
Potencia activa (P., P., P.)	PF = 1 V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	\pm 0,3% R \pm 0,003% P _{nom} ⁽²⁾
kW	PF = [0,5 inductivo; 0,8 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	\pm 0,7% R \pm 0,007% P _{nom} ⁽²⁾
Potencia reactiva (Qf₁, Qf₂, Qf⊤)	Sin φ = [0,8 inductivo; 0,6 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 10% I _{nom}]	$\pm 2\% R \pm 0.02\% Qf_{nom}^{(2)}$
kvar	Sin φ = [0,8 inductivo; 0,6 capacitivo] V = [100 V; 660 V] I = [10% I _{nom} ; 120% I _{nom}]	\pm 1% R \pm 0,01% Qf _{nom} ⁽²⁾
Potencia aparente (S ₁ , S ₂ , S ₇) kVA	V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	$\pm 0.3\% \text{ R} \pm 0.003\% \text{ S}_{nom}$
Faster de petencia (DE DE DE)	PF = [0,5 inductivo; 0,5 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,02 ⁽²⁾
Factor de potencia ($\Gamma\Gamma_1, \Gamma\Gamma_2, \Gamma\Gamma_T$)	PF = [0,2 inductivo; 0,2 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,05 ⁽²⁾
	Cos φ = [0,5 inductivo; 0,5 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,05 ⁽²⁾
$\cos \varphi (\cos \varphi_1, \cos \varphi_2, \cos \varphi_7)$	Cos φ = [0,2 inductivo; 0,2 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,1 ⁽²⁾
Energía activa (Ep ₁ , Ep ₂ , Ep ₇)	PF = 1 V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,5% L (2)
kWh	PF = [0,5 inductivo; 0,8 capacitivo] V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,6% R (2)
Energía reactiva (Eq₁, Eq₂, Eq⊤)		± 2,5% R ⁽²⁾
kvarh	Sin φ = [0,8 inductivo; 0,6 capacitivo] V = [100 V; 660 V] I = [10% I _{nom} ; 120% I _{nom}]	± 1,5% R ⁽²⁾
Energía aparente (Es ₁ , Es ₂ , Es _τ) kVAh	V = [100 V; 660 V] I = [5% I _{nom} ; 120% I _{nom}]	± 0,5% R

- 1: La incertidumbre se especifica para una tensión de salida de 1 V (Inom). Debe añadirse la incertidumbre del sensor de corriente para obtener la incertidumbre total (véase la Tabla 15). En el caso de los sensores AmpFlex[®] y MiniFlex, la incertidumbre total se indica en la Tabla 16.
- 2: Las incertidumbres se definen para la carga, inductiva para el cuadrante 1 y capacitiva para el cuadrante 4. Las mismas incertidumbres se aplican a la fuente para los cuadrantes correspondientes.

Reloj interno: ±20 ppm

i

6.2.4. SENSORES DE CORRIENTE

6.2.4.1. Precauciones de uso

Remítase a la ficha de seguridad suministrada o al manual de instrucciones descargable.

Las pinzas amperimétricas y los sensores de corriente flexibles permiten medir la corriente que circula en el cable sin abrir el circuito. Asimismo, aíslan al usuario de las tensiones peligrosas presentes en el circuito.

La selección del sensor de corriente a utilizar depende de la corriente a medir y del diámetro de los cables. Cuando usted instala sensores de corriente, dirija la flecha que se encuentra en el sensor hacia la carga.

Cuando un sensor de corriente no está conectado, el instrumento muestra - - -.

6.2.4.2. Características

Los rangos de medida son los de los sensores de corriente. A veces pueden diferir de los rangos medibles por el PEL.

MiniFlex MA194			
Rango nominal	300 / 3.000 Aca		
Rango de medida	0,4 a 360 Aca para el rango 300 2 a 3.600 Aca para el rango 3.000		
Diámetro máximo de la capacidad para abrazar	Longitud = 250 mm; \emptyset = 70 mm Longitud = 350 mm; \emptyset = 100 mm Longitud = 1.000 mm; \emptyset = 320 mm	Д	
Influencia de la posición del conductor en el sensor	≤ 2,5%	∏ ↓	
Influencia de un conductor adyacente por el que pasa una corriente CA	> 40 dB típico a 50/60 Hz para un conductor en contacto con el sensor y > 33 dB cerca del trinquete		
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 600 V categoría IV, 1.000 V categoría III		

a) MiniFlex MA194

Tabla 8

Observación: Las corrientes < 0,4 A para el rango 300 A y < 2 A para el rango 3.000 A se fijarán a cero.

b) AmpFlex® A193

AmpFlex [®] A193			
Rango nominal	300 / 3.000 Aca		
Rango de medida	0,4 a 360 Aca para el rango 300 2 a 3.600 Aca para el rango 3.000		
Diámetro máximo de la capacidad para abrazar (según modelo)	Longitud = 450 mm; $Ø$ = 120 mm Longitud = 800 mm; $Ø$ = 235 mm		
Influencia de la posición del conductor en el sensor	≤ 2% en cualquier parte y ≤ 4% cerca del trinquete		
Influencia de un conductor adyacente por el que pasa una corriente CA	> 40 dB típico a 50/60 Hz en cualquier parte y > 33 dB cerca del trinquete		
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 600 V categoría IV, 1.000 V categoría III		

Tabla 9

Observación: Las corrientes < 0,4 A para el rango 300 A y < 2 A para el rango 3.000 A se fijarán a cero.

c) Pinza C193

Pinza C193			
Rango nominal	1.000 Aca para f ≤ 1 kHz		
Rango de medida	0,5 a 1.200 Aca (I >1.000 A durante 5 minutos máximo)		
Diámetro máximo de la capacidad para abrazar	52 mm		
Influencia de la posición del conductor en la pinza	< 0,1%, de CC a 440 Hz		
Influencia de un conductor adyacente por el que pasa una corriente CA	> 40 dB típico a 50/60 Hz		
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 600 V categoría IV, 1.000 V categoría III		

Tabla 10

Observación: Las corrientes < 0,5 A se fijarán a cero.

d) Pinza MN93

Pinza MN93			
	200 Aca para f ≤ 1 kHz		
Rango de medida	0,1 a 240 Aca máx. (I >200 A no permanente)] с Щ	
Diámetro máximo de la capacidad para abrazar	20 mm		
Influencia de la posición ชี่สารชาชิติชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชี	< 0,5%, a 50/60 Hz		
Influencia de un conductor adyacente por el que pasa una corriente CA	> 35 dB típico a 50/60 Hz		
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 300 V categoría IV, 600 V categoría III		

Tabla 11

Observación: Las corrientes < 0,1 A se fijarán a cero.

e) Pinza MN93A

Pinza MN93A				
Rango nominal	5 y 100 Aac			
Rango de medida	2,5 mA a 6 Aca para el rango 5 A 0,05 a 120 Aca para el rango 100 A			
Diámetro máximo de la capacidad para abrazar	20 mm			
Influencia de la posición del conductor en la pinza	< 0,5%, a 50/60 Hz	501		
Influencia de un conductor adyacente por el que pasa una corriente CA	> 35 dB típico a 50/60 Hz			
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 300 V categoría IV, 600 V categoría III			

Tabla 12

El rango 5 A de las pinzas MN93A está indicada para las medidas de corrientes secundarias de transformadores de corriente.

Observación: Las corrientes < 2,5 mA para el rango 5 A y < 50 mA para el rango 100 A se fijarán a cero.

f) Pinza MINI 94

	Pinza MINI 94	
Rango nominal	200 Aca	
Rango de medida	50 mA a 240 Aca	
Diámetro máximo de la capacidad para abrazar	16 mm	
Influencia de la posición del conductor en la pinza	< 0,08%, a 50/60 Hz	
Influencia de un conductor adyacente por el que pasa una corriente CA	> 45 dB típico a 50/60 Hz	
Seguridad	IEC/EN 61010-2-032, grado de contaminación 2, 300 V categoría IV, 600 V categoría III	

Tabla 13

Observación: Las corrientes < 50 mA se fijarán a cero.

g) Umbrales de los sensores de corriente

Sensor	Corriente nominal	Número de vueltas	Umbral de visualización	
Pinza C193	1.000 A		0,50 A	
		1 vuelta	0,40 A	
	300 A	2 vueltas	0,20 A	
AmpFlex [®] A193		3 vueltas	0,15 A	
MiniFlex MA194		1 vuelta	2 A	
	3.000 A	2 vueltas	1 A	
		3 vueltas	0,7 A	
Dipzo MNO2A	5 A		2,5 mA	
FIIIZA WIN95A	100 A		50 mA	
Pinza MN93	200 A		0,1 A	
Pinza MINI 94	200 A		50 mA	
Adaptador BNC 1.000 A (rango 1 mV/A)			0 A (sin umbral)	

Tabla 14

Las incertidumbres intrínsecas de las medidas de corriente y de fase deben añadirse a las incertidumbres intrínsecas del instrumento para la magnitud correspondiente: potencia, energías, factores de potencia, etc.

Las siguientes características se dan para las condiciones de referencia de los sensores de corriente.

Sensor de corriente	I nominal	Corriente (RMS o CC)	Incertidumbre intrínseco a 50/60 Hz	Incertidumbre intrínseca en φ a 50/60 Hz	Incertidumbre típica en φ a 50/60 Hz	Resolución
		[1 A; 50 A]	± 1% R	_	-	
Pinza C193	1.000 Aca	[50 A; 100 A]	± 0,5% R	± 1°	+ 0,25°	10 mA
		[100 A; 1.200 A]	± 0,3% R	± 0,7°	+ 0,2°	
		[0,5 A; 5 A]	± 3% R ± 1 A	_	-	
Dinzo MNO2	200 4 00	[5 A; 40 A]	± 2,5% R ± 1 A	± 5°	+ 2°	1 mA
Pinza MN93	200 ACA	[40 A; 100 A]	± 2% R ± 1 A	± 3°	+ 1,2°	
		[100 A; 240 A]	± 1% R + 1 A	± 2,5°	± 0,8°	
10	100 4 22	[200 mA; 5 A]	± 1% R ± 2 mA	±4°	_	1 mA
	100 Aca	[5 A; 120 A]	± 1% R	± 2,5°	+ 0,75°	
PINZA WIN95A	E A a a	[5 mA; 250 mA]	± 1,5% R ± 0,1 mA	_	-	1 m 4
5 Aac	5 Aac	[250 mA; 6 A]	± 1% R	± 5°	+ 1,7°	TIIIA
Pinza MINI 94 200 Aca	200 4 22	[0,05 A; 10 A]		± 1°	± 0,2°	1 m 4
	200 ACa	[10 A; 240 A]	± 0,2 % K ± 20 MA	± 0,2°	± 0,1°	I MA
Adaptador BNC	Adaptador BNCLa gama nominal de la tensión de entrada del adaptador BNC es de 1 V. Remítase a las especificaciones de los sensores de corriente.					

Características de los sensores de corriente que tienen una salida de 1 V a Inom

Tabla 15

Características de los AmpFlex® y MiniFlex

Sensor de corriente	I nominal	Corriente (RMS o CC)	Incertidumbre intrínseca a 50/60 Hz	Incertidumbre intrínseca en φ a 50/60 Hz	Incertidumbre típica en φ a 50/60 Hz	Resolución
	300 Aca	[0,5 A; 10 A]	± 1 2% P ± 0 2 A	-	-	10 mA
AmpFlex [®]	[10 A; 360 A]	± 1,2 % K ± 0,2 A	± 0,5°	0°	TO MA	
A193 3.000 Aca	[1 A; 100 A]		-	-	100 m 4	
	5.000 Aca	[100 A; 3.600 A]	I,270 KIIA	± 0,5°	0°	100 IIIA
MiniFlex MA194 3.000 Aca	200 4 22	[0,5 A; 10 A]	+ 1% P + 0.2 A	-	-	10 m (
	500 Aca	[10 A; 360 A]	± 1/0 K ± 0,2 A	± 0,5°	0°	TO THA
	2 000 4 00	[1 A; 100 A]	± 1% R ± 1 A	-	-	100 mA
	3.000 Aca	[100 A; 3.600 A]		± 0,5°	0°	

Tabla 16

Factor de pico:

■ 2,8 a 360 A en el rango 300 A.

■ 1,7 a 3.600 A en el rango 3.000 A.

Limitación de los AmpFlex® y MiniFlex

Al igual que para todos los sensores de Rogowski, la tensión de salida de los AmpFlex[®] y MiniFlex es proporcional a la frecuencia. Una corriente elevada a altas frecuencias puede saturar la entrada de corriente de los dispositivos.

Para evitar la saturación, debe cumplirse la siguiente condición:

$$\sum_{n=1}^{n=\infty} [n. I_n] < I_{nom}$$

Con I_{nom}el rango del sensor de corriente

n el rango del armónico

l el valor de la corriente para el armónico de rango n

Por ejemplo, el rango de corriente de entrada de un regulador debe ser 5 veces menor que el rango de corriente seleccionado del instrumento.

Este requisito no tiene en cuenta la limitación del ancho de banda del instrumento, que puede dar lugar a otros errores.

6.3. VARIACIÓN EN EL RANGO DE USO

6.3.1. GENERAL

Desviación del reloj interno: ± 5 ppm/año a 25 ± 3 °C

6.3.2. TEMPERATURA

 V_1, V_2^{\cdot} 50 ppm/°C típico I_1, I_2^{\cdot} : 150 ppm/°C típico, para 5% I_{nom} < I < 120% I_{nom} Reloj interno: 10 ppm/°C

6.3.3. HUMEDAD

Rango de influencia: 30 a 75% HR a 50 °C / 85% HR a 23 °C sin condensación La influencia se indica para el instrumento con sensores de corriente. V₁, V₂: \pm 2% I₁, I₂ (1% I_{nom} \leq I \leq 10% I_{nom}): 5% (10% I_{nom} < I \leq 120% I_{nom}): 4%

6.3.4. COMPONENTE CONTINUA

Rango de influencia: \pm 100 Vcc Magnitudes influenciadas: V₁, V₂ Rechazo: > 160 dB

6.3.5. FRECUENCIA

Rango de influencia: 45 Hz a 65 Hz, - 60° $\leq \phi \leq$ +60° Magnitudes influenciadas: V₁, V₂, I₁, I₂, P₁, P₂ Influencia: 0,1%/Hz

6.3.6. ANCHO DE BANDA

Rango de influencia: desde 100 Hz hasta 5 kHz (armónicos) Presencia de la fundamental a 50/60 Hz (THD = 50%) V₁, V₂: 0,5% @ 2,1 kHz / -3 dB @ 5 kHz I₁, I₂ (entrada directa, excepto AmpFlex[®] y MiniFlex): 0,5% @ 1,75 kHz / -3 dB @ 5 kHz P₁, P₂: 0,5% @ 1,25 kHz / -3 dB @ 3,5 kHz

6.3.7. SEÑALES PERTURBADAS

Tipo de señal	Sensor	Influencia típica
Regulador do corto do faco	Pinza MN93A	< 1%
Regulador de corte de lase	MiniFlex MA194	< 3%
Cuadrada	Pinza MN93A	< 1%
Cuadrado	MiniFlex MA194	< 3%

El ancho de banda de las señales es de 6 kHz, 5% $I_{nom} < I \le 50\% I_{nom}$.

Los puentes rectificadores tienen una forma de onda que no es compatible con los PEL51/52.

6.4. FUENTE DE ALIMENTACIÓN

Alimentación eléctrica (entre los bornes V1 y N)

- Rango de funcionamiento: 90 V 600 V
- Una tensión CC de 100 V o más impedirá el funcionamiento de la alimentación eléctrica.
- Potencia: 3 a 5 W en función de la tensión de entrada.
- Corriente: a 90 Vca, 100 mApico y 17 mArms. Corriente de arranque: 1,9 Apico a 600 Vca, 500 mApico y 0,026 mArms. Corriente de arranque: 5,3 Apico

Batería

i

- 2 elementos recargables NiMH de tipo AAA 750 mAh
- Masa de la batería: 25 g aproximadamente
- Tiempo de carga: 5 h aproximadamente
- Tiempo de recarga: 0 a 45 °C
- Autonomía con el WiFi activo: 1 h como mínimo, 3 h en típica

Cuando el instrumento está apagado, el reloj en tiempo real se mantiene durante más de 20 días.

6.5. CARACTERÍSTICAS MEDIOAMBIENTALES

Temperatura y humedad relativa

- Uso en interiores.
- Altitud
 - Funcionamiento: 0 a 2.000 m;
 - Almacenamiento: 0 a 10.000 m

6.6. WIFI

2,4 GHz banda IEEE 802.11 b/g/n Potencia Tx: +15,1 dBm Sensibilidad Rx: -96,3 dBm Seguridad: abierto / WPA2

6.7. CARACTERÍSTICAS MECÁNICAS

- Dimensiones: 180 × 88 × 37 mm
- Masa: aproximadamente 400 g
- Grado de protección: proporcionado por la envoltura según IEC 60529,
 - IP 54 cuando el aparato no está conectado IP 20 cuando el aparato está conectado
- 6.8. SEGURIDAD ELÉCTRICA

Los instrumentos cumplen con la norma IEC/EN 61010-2-030 para una tensión de 600 V, categoría de medida III, grado de contaminación 2.

Los instrumentos cumplen con la norma BS EN 62749 para los EMF.

La carga de la batería entre los bornes **V1** y **N**: 600 V categoría de sobretensión III, grado de contaminación 2. Los cables de medida y las pinzas cocodrilo cumplen con la norma IEC/EN 61010-031.

6.9. COMPATIBILIDAD ELECTROMAGNÉTICA

Emisiones e inmunidad en medio industrial compatibles con la norma IEC/EN 61326-1 .

Con los AmpFlex[®] y los MiniFlex, la influencia típica en la medida es de 0,5% del final de la escala con un máximo de 5 A.

6.10. EMISIÓN RADIO

Los instrumentos cumplen con la directiva RED 2014/53/UE y la normativa FCC. Número de certificación FCC para el WiFi: FCC QOQWF121

6.11. TARJETA DE MEMORIA

El instrumento consta de una tarjeta micro-SD de una capacidad de 8 GB formateada en FAT32. Esta tarjeta permite registrar durante 100 años, pero la cantidad de sesiones de registro es limitada.

El símbolo de la memoria en el display indica su llenado:

- \Box : cantidad de sesiones \leq 50,
- Cantidad de sesiones > 50,

- E antidad de sesiones = 200,

Las sesiones de registro se pueden descargar y/o borrar individualmente a través del software de aplicación PEL Transfer.

La transferencia de grandes cantidades de datos desde la tarjeta SD a un PC puede ser larga. Además, algunos ordenadores pueden tener dificultades para procesar tales cantidades de información y las hojas de cálculo sólo aceptan una cantidad limitada de datos. Para transferir los datos de forma más rápida, utilice el adaptador de tarjeta SD/USB.

El tamaño máximo de un registro es de 4 GB y su duración es ilimitada (> 100 años).

1

El instrumento no contiene ninguna pieza que pueda ser sustituida por un personal no formado y no autorizado. Cualquier intervención no autorizada o cualquier pieza sustituida por piezas similares pueden poner en peligro seriamente la seguridad.

7.1. LIMPIEZA

Desenchufe cualquier conexión del instrumento.

Utilice un paño suave ligeramente empapado con agua y jabón. Aclare con un paño húmedo y seque rápidamente con un paño seco o aire inyectado. No se debe utilizar alcohol, solvente o hidrocarburo.

No utilice el instrumento si los bornes o el teclado están mojados. Séquelo primero.

Para los sensores de corriente:

- Procure que ningún cuerpo extraño impida el funcionamiento del dispositivo de trinquete del sensor de corriente.
- Mantenga los entrehierros de la pinza en perfectas condiciones de limpieza. No eché agua directamente sobre las pinzas.

7.2. BATERÍA

El instrumento está dotado de una batería NiMH. Esta tecnología presenta varias ventajas:

- Larga autonomía para un volumen y un peso limitados.
- Efecto de memoria sensiblemente reducido: puede cargar su batería aunque no esté totalmente descargada.
- Respeto al medio ambiente: ningún material contaminante como el plomo o el cadmio, de conformidad con las normativas aplicables.

La batería puede estar totalmente descargada después de un largo tiempo de almacenamiento. En este caso, debe cargarse completamente. El instrumento puede no funcionar durante parte del proceso de carga. Cargar una batería totalmente descargada puede tardar varias horas.

En tal caso, se necesitará entonces al menos 5 ciclos de carga/descarga para que la batería recupere el 95% de su capacidad. Remítase a la ficha de la batería suministrada con el instrumento.

Para optimizar el uso de su batería y prolongar su vida útil eficaz:

- Cargue el instrumento únicamente a temperaturas de entre 0 y 45 °C.
- Respete las condiciones de uso.
- Respete las condiciones de almacenamiento.

7.3. ACTUALIZACIÓN DEL FIRMWARE

Velando siempre por proporcionar el mejor servicio posible en materia de prestaciones y evoluciones técnicas, Chauvin Arnoux le brinda la oportunidad de actualizar el firmware de este instrumento.

i

La actualización del firmware puede dar lugar a un reseteo de la configuración y a la pérdida de la fecha y datos registrados. Como medida preventiva, guarde los datos de la memoria en un PC antes de realizar la actualización. Consulte nuestro sitio web: www.chauvin-arnoux.com

Luego, entre en la sección Soporte, Descargar nuestros software y luego realice una búsqueda con PEL51 o PEL52.

Descargue el archivo zip que contiene el nuevo firmware y la utilidad de instalación FlashUp.

O TOP

- Conecte el instrumento a su PC mediante WiFi.
- Descomprima el archivo zip.
- Inicie FlashUp.exe.

PEL5x/L4xx - Flash Upgrade Utility (V2.4) Instrument USB Refresh Outside the structure of the	 Marque la casilla Network. Introduzca la dirección IP de su instrumento. Haga clic en Connect para conectar su instrumento. El firmware está compuesto por dos partes: Program Logger y Program WiFi. Seleccione cualquiera de
Exit Status Logger firmware: A0701_V2.34.hex, WiFi firmware: PEL5x_web	los dos y proceda a la actualización. Cuando haya terminado, seleccione el otro y vuelva a actualizar.
	 Haga clic en Program. Instalar el firmware lleva unos 5 minutos. La ventana indica el progreso. Aparecerá en el instrumento FLASHUP.
Figura 31	_
💹 PEL5x/L4xx - Flash Upgrade Utility (V2.4) — 🗆 🗙	
C USB Refresh	
© Network Address 192 . 168 . 2 . 1 © UDP	

 Cuando finalice la instalación, haga clic en Exit, se cerrará entonces la ventana de FlashUp. Apague el instrumento y vuelva a encenderlo.

Figura 32

Connect

3041

Program Logger

C Program WiFi

A0701_V2.34.hex,

PEL5x_web

Port

Hex File

Program

Exit = Status Logger firmware:

WiFi firmware:

Programming block 872 of 4097

7.4. FORMATEO DE LA TARJETA SD

Si cuando pulsa la tecla **Selección** c para iniciar un registro, aparecerá en el display **SD CARD ERROR** (Error en la tarjeta SD), es que la tarjeta SD del instrumento tiene un problema.

Conecte su dispositivo al software de la aplicación PEL Transfer. En la ventana de configuración, puede formatear la tarjeta SD.

Si esto no resuelve el problema, deberá cambiar la tarjeta SD (véase § 2.5).

Desenchufe todas las conexiones del instrumento antes de abrir la ranura de la tarjeta SD.

7.5. MENSAJES

Los principales mensajes se refieren al WiFi.

AP CONFIG TCPIP FAILED Modo AP: fallo de la configuración del TCP/IP AP DHCP SERVER FAILED Modo AP: fallo del inicio del servidor DHCP Modo AP: fallo del inicio del modo AP AP MODE START FAILED Modo AP: fallo de la configuración del modo de ahorro de energía máx. AP POWER MODE FAILED Modo AP: fallo del escaneo de la red AP SCAN FAILED Modo AP: fallo de la definición de la contraseña del modo AP AP SET PASSWORD FAILED AP UDP SERVER FAILED Modo AP: fallo del inicio del servidor UDP AP TCP SERVER FAILED Modo AP: fallo del inicio del servidor TCP CONFIG AP Configura el módulo para el funcionamiento en punto de acceso CONFIG DHCP Configura los módulos para el servidor DHCP CONFIG HTTP SERVER Configura los módulos para el servidor HTTP Configura el módulo para el modo ST (rúter) CONFIG ST Configura los parámetros TCP CONFIG TCP CONFIG TCP SERVER Configura los parámetros del servidor TCP Configura los parámetros TCP/IP CONFIG TCPIP CONFIG UDP/TCP SERVER Configura los módulos para el servidor UDP/TCP CONFIG UDP SERVER Configura los parámetros UDP CONNECT SSID Conexión a un servidor SSID DISABLED Desactivado por el usuario Programación del módulo WiFi FLASHING WIFI MODULE Fallo del inicio del servidor HTTP HTTP SERVER FAILED **INIT FAILURE** Fallo de la inicialización NO CONFIG TCPIP RSP Modo STA: sin configuración de la respuesta TCP/IP NO CONFIG TCPIP EVT Modo STA: sin configuración del evento TCP/IP Sin respuesta del evento MAC NO GET MAC EVT Sin respuesta de la dirección MAC NO GET MAC RSP NO HELLO RSP Sin respuesta Hello NO OP MODE RSP Sin respuesta para establecer el modo de funcionamiento (STA o AP) NO POWER MODE RSP Modo STA: sin respuesta para establecer el modo de ahorro de energía máximo Modo STA: sin respuesta al evento Radio On NO RADIO ON EVT Modo STA: sin respuesta de activación de la radio NO RADIO ON RSP El módulo no ha respondido a la reinicialización material NO RESPONSE NO SET MAC RSP Sin respuesta para establecer la dirección MAC NO SET PASSWORD RSP Modo STA: sin respuesta para establecer la contraseña WiFi NO SYNC RSP Sin respuesta de sincronización POWER ON Encendido del módulo POWER MODE AP Establecer el modo de alimentación para el funcionamiento del WiFi AP Establecer el modo de alimentación para el funcionamiento del WiFi ST POWER MODE ST Activación de la radio en el módulo RADIO ON RADIO ON AP Activación de la radio Modo AP: fallo de la puesta en marcha de la radio RADIO ON FAILED **RESETTING MODULE** Reinicialización del módulo Ajuste del modo de funcionamiento 802.11 **SET 80211 MODE** Fallo del ajuste del modo de funcionamiento 802.11 SET 80211 MODE FAILED Modo AP: fallo de la definición del modo AP SET AP MODE FAILED SET AP PASSWORD Establecer la contraseña del modo AP SET PASSWORD Establecer la contraseña que se utilizará al conectarse a un SSID existente SETTING BPS RATE Ajuste del BPS del módulo SETTING OPERATING MODE Ajuste del modo de funcionamiento del módulo Escaneo del SSID SSID SCAN AP SSID ERROR Fallo de la conexión al SSID especificado

START AP SERVER START TCP AP SERVER START TCP SERVER FAILED START UDP AP SERVER START UDP SERVER FAILED START UDP/TCP AP SERVER VALIDATE FAILED VALIDATING MAC WAITING FOR BOOT EVENT WAIT FOR HELLO MSG WAITING FOR SYNC Inicio del servidor en modo AP Inicio del servidor TCP para el funcionamiento en modo AP Modo STA: fallo del inicio del servidor TCP Inicio del servidor UDP para el funcionamiento en modo AP Modo STA: fallo del inicio del servidor UDP Inicio de los servidores UDP/TCP del modo APs Fallo de la validación Verificación de la validez de la dirección MAC Esperando que el módulo envíe un mensaje de evento de inicio esperando el mensaje de inicio del módulo esperando mensajes de sincronización del módulo

8. GARANTÍA

Nuestra garantía tiene validez, salvo estipulación expresa, durante **24 meses** a partir de la fecha de entrega del material. El extracto de nuestras Condiciones Generales de Venta está disponible en nuestro sitio Web. <u>www.chauvin-arnoux.com/es/condiciones-generales-de-venta</u>

La garantía no se aplicará en los siguientes casos:

- Utilización inapropiada del instrumento o su utilización con un material incompatible.
- Modificaciones realizadas en el instrumento sin la expresa autorización del servicio técnico del fabricante.
- Una persona no autorizada por el fabricante ha realizado operaciones sobre el instrumento.
- Adaptación a una aplicación particular, no prevista en la definición del instrumento o en el manual de instrucciones.
- Daños debidos a golpes, caídas o inundaciones.

9.1. MEDIDAS

9.1.1. DEFINICIÓN

Representación geométrica de la potencia activa y reactiva:

Figura 33

La referencia de este esquema es el vector de corriente (fijado en la parte derecha del eje).

El vector de tensión V varía en su dirección en función del ángulo de fase ϕ .

El ángulo de fase φ, entre la tensión V y la corriente I, se considera positivo en el sentido matemático del término (sentido contrario a las agujas del reloj).

9.1.2. MUESTREO

9.1.2.1. Cantidades «1 s» (un segundo)

El instrumento calcula las cantidades siguientes cada segundo en base a las medidas en un ciclo, según el § 9.2. Las cantidades «1 s» se utilizan para:

- los valores en tiempo real;
- las tendencias en 1 segundo;
- la agregación de los valores para las tendencias «agregadas»;
- la determinación del valor mínimo y máximo para los valores de las tendencias «agregadas».

Todas las cantidades «1 s» pueden guardarse en la tarjeta SD durante la sesión de registro.

9.1.2.2. Agregación

Una cantidad agregada es un valor calculado en un periodo definido según las fórmulas indicadas en la Tabla 18.

El periodo de agregación empieza siempre al inicio de una hora o de un minuto. El periodo de agregación es el mismo para todas les cantidades. Los periodos posibles son los siguientes: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 y 60 min.

Todas las cantidades agregadas pueden guardarse en la tarjeta SD durante la sesión de registro. Se pueden visualizar en el PEL Transfer.

9.1.2.3. Mínimo y máximo

Los Mín. y Máx. son el valor mínimo y máximo de las cantidades «1 s» del periodo de agregación abarcado. Se registran con la fecha y la hora. Los Máx. de algunos valores agregados se visualizan directamente en el instrumento.

9.1.2.4. Cálculo de las energías

Las energías se calculan cada segundo. Las energías totales están disponibles con los datos de la sesión de registro.

9.2. FÓRMULAS DE MEDIDA

Cantidades	Fórmulas	Comentarios
Tensión CA RMS fase-neutro (V_L)	$V_L[1s] = \sqrt{\frac{1}{N} \times \sum_{1}^{N} v_L^2}$	vL = v1 o v2 muestra elemental N = número de muestras
Tensión CA RMS fase-fase (U_L)	$U_{ab}[1s] = \sqrt{\frac{1}{N} \times \sum_{1}^{N} u_{ab}^2}$	Uab = u ₁₂ muestra elemental N = número de muestras
Corriente CA RMS (I _L)	$I_L[1s] = \sqrt{\frac{1}{N} \times \sum_{1}^{N} i_L^2}$	iL = i1 o i2 muestra elemental N = número de muestras
Potencia activa (P _L)	$P_L[1s] = \frac{1}{N} \times \sum_{1}^{N} (v_L \times i_L)$	L = I1 o I2 muestra elemental N = número de muestras $P_{T}[1s] = P_{1}[1s] + P_{2}[1s]$

Tabla 17

9.3. AGREGACIÓN

Las cantidades agregadas se calculan para un periodo definido según las siguientes fórmulas basadas en valores de «1 s». La agregación puede calcularse mediante la media aritmética, la media cuadrática u otros métodos.

Cantidades	Fórmula
Tensión fase-neutro (Vլ) (RMS)	$V_L[agg] = \sqrt{\frac{1}{N} \times \sum_{x=0}^{N-1} V_L^2[ls]x}$ L = 1 o 2
Tensión fase-fase (U _{ab}) (RMS)	$U_{ab}[agg] = \sqrt{\frac{1}{N} \times \sum_{x=0}^{N-1} U_{ab}^2 [ls]_x}$ ab = 12
Corriente (I _L) (RMS)	$I_L[agg] = \sqrt{\frac{1}{N} \times \sum_{x=0}^{N-1} I_L^2 [1s]_x}$ L = 1 o 2
Frecuencia (F _L)	$F[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} F[1s]_x$
Potencia activa (P _L)	$P_L [agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} P_L [1s]_x$ L = 1, 2 o T
Potencia reactiva (Qf _L)	$Qf_L[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} Qf_L[ls]_x$ L = 1, 2 o T
Potencia aparente (S_L)	$S_L[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} S_L[1s]_x$ L = 1, 2 o T
Factor de potencia de la fuente con el cuadrante asociado (PF _{sL})	$PF_{SL}[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} PF_{SL}[1s]_x$ L = 1, 2 o T
Factor de potencia de la carga con el cuadrante asociado (PF _{LL})	$PF_{LL}[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} PF_{LL}[1s]_x$ L = 1, 2 o T
$\cos (\phi)_s$ de la fuente con el cuadrante asociado	$Cos(\varphi_L)_S[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} Cos(\varphi_L)_S[1s]_x$ L = 1, 2 o T

Cantidades	Fórmula	
Cos $(\phi)_{L}$ de la carga con el cuadrante asociado	$\operatorname{Cos}(\varphi_L)_L[agg] = \frac{1}{N} \times \sum_{x=0}^{N-1} \operatorname{Cos}(\varphi_L)_L[ls]_x$	L = 1, 2 o T

Tabla 18

N es el número de valores «1 s» para el periodo de agregación considerado (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 o 60 minutos).

9.4. REDES ELÉCTRICAS SOPORTADAS

Son compatibles los siguientes tipos de redes de distribución:

- V1, V2 son las tensiones fase-neutro de la instalación medida. [V1=VL1-N; V2=VL2-N].
- Las minúsculas v1, v2 son los valores muestreados.
- U12 es la tensión entre fases de la instalación medida.
- Las minúsculas son los valores muestreados [u12 = v1-v2].
- 11, 12 son las corrientes que circulan en los conductores de fase de la instalación medida.
- Las minúsculas i1, i2 son los valores muestreados.

Red de distribución	Abreviatura	Comentarios	Esquema de referencia
PEL51 y PEL52 Monofásica (monofásica 2 hilos 1 corriente)	1P- 2W1I	La tensión se mide entre L1 y N. La corriente se mide en el conductor L1.	véase § 4.1.1
PEL51 Monofásica (monofásica 3 ilos 2 corrientes)	1P- 3W2I	La tensión se mide entre L1 y N. La corriente se mide en los conductores L1 y L2.	véase § 4.1.2
PEL51 Bifásica (split-phase monofásica 3 hilos)	2P-3W2I	La tensión se mide entre L1, L2 y N. La corriente se mide en los conductores L1 y L2.	véase § 4.1.3

Tabla 19

9.5. MAGNITUDES DISPONIBLES

disponible en el instrumento y en PEL Transfer

disponible en PEL Transfer

no disponible

Cantidades	Símbolo	Valor tiempo real 1 s	Valor tendencia 1 s	Valor máx.	Valores tendencia agregados	Mín./Máx. 1s agregados
Tensión fase-neutro	V ₁ , V ₂	•	0	•	0	0
Tensión fase-fase	U ₁₂	•	0	•	0	0
Corriente	I ₁ , I ₂	•	0	•	0	0
Frecuencia	f	•	0		0	0
Potencia activa	$P_{1}P_{2}P_{T}$	•	0		0	
Potencia activa en la fuente	$P_{1,}P_{2,}P_{T}$			•	0	_O (1)
Potencia activa en la carga	$P_{1,}P_{2,}P_{T}$			•	0	_O (1)
Potencia activa fundamental	Pf _{1,} Pf _{2,} Pf ₇	0	0		0	
Potencia activa fundamental en la fuente	$Pf_{1,}Pf_{2,}Pf_{T}$				0	
Potencia activa fundamental en la carga	$Pf_{1,}Pf_{2,}Pf_{T}$				0	
Potencia reactiva	Qf _{1,} Qf _{2,} Qf ₇	•	0		0	
Potencia reactiva en la fuente	$Qf_{1,}Qf_{2,}Qf_{T}$			•	0	_O (1)
Potencia reactiva en la carga	$Qf_{1,}Qf_{2,}Qf_{T}$			•	0	_O (1)
Potencia aparente	S _{1,} S _{2,} S ₇	•	0		0	_O (1)
Potencia aparente en la fuente	S _{1,} S _{2,} S ₇			•	0	
Potencia aparente en la carga	S _{1,} S _{2,} S ₇			•	0	
Potencia no activa	N _{1,} N _{2,} N _T	0	0		0	
Potencia distorsionante	D ₁ , D ₂ , D _T	0	0		0	
Factor de potencia	$PF_{1,}PF_{2,}PF_{T}$	•	0			
Factor de potencia en la fuente	$PF_{1,}PF_{2,}PF_{T}$				0	
Factor de potencia en la carga	$PF_{1,}PF_{2,}PF_{T}$				0	
Cos φ	$\begin{array}{c} Cos \ \phi_{_1} \ Cos \ \phi_{_{2,}} \\ Cos \ \phi_{_T} \end{array}$	0	0			
Cos φ en la fuente	$\begin{array}{c} Cos \ \phi_{_{1,}} Cos \ \phi_{_{2,}} \\ Cos \ \phi_{_{T}} \end{array}$				0	
Cos φ en la carga	$\begin{array}{c} Cos \ \phi_{_{1,}} Cos \ \phi_{_{2,}} \\ Cos \ \phi_{_{T}} \end{array}$				0	
Energía activa total en la fuente	Ep _τ	•	0			
Energía activa total en la carga	Εp _τ	•	0			
Energía reactiva en el cuadrante 1	Eq _τ	•	0			
Energía reactiva en el cuadrante 2	Eq _τ	•	0			
Energía reactiva en el cuadrante 3	Εq _τ	•	0			

Cantidades	Símbolo	Valor tiempo real 1 s	Valor tendencia 1 s	Valor máx.	Valores tendencia agregados	Mín./Máx. 1s agregados
Energía reactiva en el cuadrante 4	Εq _τ	•	0			
Energía aparente en la fuente	Es _T	•	0			
Energía aparente en la carga	Es _τ	•	0			
$\Phi(l_2, l_1)$		•				
$\Phi(V_2, V_1)$		•				
$\Phi(I_1, V_1)$		•				
$\Phi(I_2, V_2)$		•				

Tabla 20

(1) ningún valor mínimo para P_{1} , P_{2} , P_{T} , Qf_{1} , Qf_{2} , Qf_{T}

9.6. MAGNITUDES DISPONIBLES

Las siguientes magnitudes están disponibles en el instrumento o en el PEL Transfer.

•
0

disponible en el instrumento y en PEL Transfer

disponible en PEL Transfer

no disponible

Cantidades	PEL51 y PEL52 1P-2W1I	PEL52 1P-3W2I y 2P-3W2I
V ₁	•	•
V ₂		•
U ₁₂		•
I ₁	•	•
I ₂		•
f	•	•
P ₁	•	•
P ₂		•
P _T	• (1)	•
Pf ₁	0	0
Pf ₂		0
Pf _T	0	0
Qf ₁	•	•
Qf ₂		•
Qf _T	• (1)	•
S ₁	•	•
S ₂		•
S _T	• (1)	•
N ₁	0	0
N ₂		0
N _T	0	0
D ₁	0	0
D ₂		0
D _T	0	0
PF ₁	•	•
PF ₂		•
PF _T	• (1)	•

Cantidades	PEL51 y PEL52 1P-2W1I	PEL52 1P-3W2I y 2P-3W2I
Cos φ ₁	0	0
$\cos \phi_2$		0
$\cos \phi_{T}$	0	0
Ep ₇ fuente	•	•
Ep _⊤ carga	•	•
Eq _⊤ cuadrante 1	•	•
Eq _⊤ cuadrante 2	•	•
Eq _⊤ cuadrante 3	•	•
Eq _⊤ cuadrante 4	•	•
Es_{T} fuente	•	•
Es _⊤ carga	•	•
$\Phi(I_1, I_2)$		•
$\Phi(V_{1},V_{2})$		•
$\Phi(I_1, V_1)$	•	•
$\Phi(I_{2},V_{2})$		•

Tabla 21

(1) $P_1 = P_p Pf_1 = Pf_p Qf_1 = Qf_p N_1 = N_p D_1 = D_p S_1 = S_p PF_1 = PF_p \cos \varphi_1 = \cos \varphi_T$

9.7. GLOSARIO

φ	Desfase de fase de la tensión con respecto a la corriente.		
0	Grado.		
%	Porcentaje.		
Α	Amperio (unidad de corriente).		
Agregación	Distintas medias definidas en el § 9.3.		
CA	Componente alterna (corriente o tensión).		
cos φ	Coseno del desfase de fase de la tensión con respecto a la corriente.		
CC	Componente continua (corriente o tensión).		
DataViewSync™	(servidor IRD): Servidor Internet Relay Device. Servidor que permite la transmisión de datos entre el registrador y un PC.		
Ер	Energía activa.		
Eq	Energía reactiva.		
Es	Energía aparente.		
Frecuencia	Número de ciclos completos de tensión o corriente por segundo.		
Hz	Hertz (unidad de frecuencia).		
I	Símbolo de la corriente.		
L	Fase de una red eléctrica polifásica.		
MAX	Valor máximo.		
MIN	Valor mínimo.		
Р	Potencia activa.		
PF	Factor de potencia (Power Factor): relación entre la potencia activa y la potencia aparente.		
Fase	Relación temporal entre corriente y tensión en los circuitos de corriente alterna.		
Qf	Potencia reactiva fundamental.		
RMS	RMS (Root Mean Square) valor cuadrático medio de la corriente o tensión. Raíz cuadrada de la media de los cuadrados de los valores instantáneos de una cantidad durante un intervalo especificado.		
S	Potencia aparente.		
Tensión nomina	I: Tensión nominal de una red.		
U	Tensión entre dos fases.		
V	Tensión fase-neutro o voltio (unidad de tensión).		
VA	Unidad de potencia aparente (Voltio x Amperio).		
var	Unidad de potencia reactiva.		
varh	Unidad de energía reactiva.		
W	Unidad de potencia activa (vatio).		
Wh	Unidad de energía activa (vatio x hora).		

Prefijos de las unidades del sistema internacional (SI)

Prefijo	Símbolo	Multiplicado por
mili	m	10 ⁻³
kilo	k	10 ³
Mega	М	10 ⁶
Giga	G	10 ⁹
Tera	Т	10 ¹²
Peta	Р	10 ¹⁵
Exa	E	1018

Tabla 22

FRANCE Chauvin Arnoux

12-16 rue Sarah Bernhardt 92600 Asnières-sur-Seine Tél : +33 1 44 85 44 85 info@chauvin-arnoux.com www.chauvin-arnoux.com INTERNATIONAL Chauvin Arnoux Tél : +33 1 44 85 44 38

export@chauvin-arnoux.fr

Our international contacts www.chauvin-arnoux.com/contacts

