

PEL 106

Регистратор мощности и энергии

Вы приобрели регистратор мощности и энергии PEL106 и мы благодарим вас за доверие.

Для максимально эффективной эксплуатации прибора необходимо:

- внимательно прочесть настоящее руководство по эксплуатации
- соблюдать меры предосторожности.

ВНИМАНИЕ, ОПАСНО! Оператор должен обратиться к настоящему руководству, когда указан этот символ.

Внимание! Риск поражения электрическим током. Напряжение, прикладываемое к деталям, обозначенным данным знаком, может представлять опасность.

Устройство защищено двойной изоляцией.

Земля.

Разъем USB.

Разъем Ethernet (RJ45).

SD-карта.

Электрическая сеть.

Полезная информация или подсказка, что это требует внимания.

SIM-карта.

Продукт считается перерабатываемым после анализа жизненного цикла в соответствии с ISO14040.

Маркировка СЕ указывает на соответствие положениям Европейской директивы по низковольтному оборудованию 2014/35/UE, Директивы по электромагнитной совместимости 2014/30/UE, Директивы по радиооборудованию 2014/53/UE, а также Директив по ограничению использования потенциально опасных веществ (RoHS) 2011/65/UE и 2015/863/UE.

Маркировка UKCA удостоверяет соответствие изделия требованиям, действующим в Соединенном Королевстве, в частности, что касается безопасности низковольтного оборудования, электромагнитной совместимости и ограничения использования потенциально опасных веществ.

Перечеркнутый контейнер означает, что в рамках Европейского союза, продукт подлежит отдельной утилизации в соответствии с директивой WEEE2012/19/EC: этот материал не должен рассматриваться в качестве бытовых отходов.

Определение категорий измерения

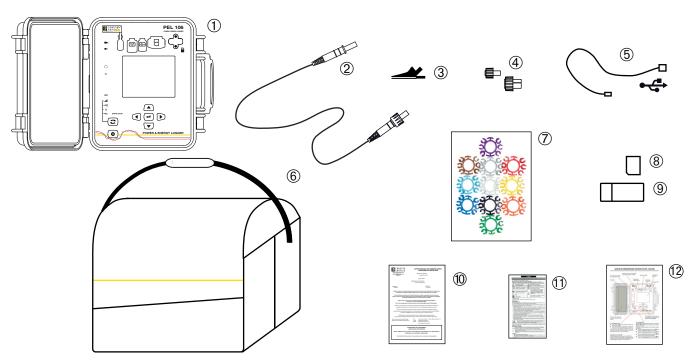
- Категория измерения IV соответствует измерениям, выполняемым на источнике низковольтной сетевой установки.
 Пример: подача электроэнергии, счетчики и защитные устройства.
- Категория измерения III соответствует измерениям, выполняемым на сетевой установке здания.

 Пример: распределительный щит, прерыватели, стационарные установки или оборудование для промышленного использования.
- Категория измерения II соответствует измерениям, выполняемым на цепях, напрямую соединенных с низковольтной сетевой установкой. Пример: блоки питания бытовых приборов и портативного инструмента.

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Данное устройство соответствует стандартам безопасности IEC/EN 61010-2-030 или BS EN 61010-2-030, кабели соответствуют IEC/EN 61010-031 или BS EN 61010-031, датчики тока - IEC/EN 61010-2-032 или BS EN 61010-2-032, для напряжений до 1000 V категории IV.

Несоблюдение правил техники безопасности может привести к риску поражения электрическим током, возгорания, взрыва и уничтожения прибора или электроустановок.


- Оператору и/или ответственному лицу необходимо внимательно прочесть и хорошо усвоить различные предписания по мерам предосторожности. Для эксплуатации данного прибора требуется хорошее знание и полное осознание рисков, связанных с электрической опасностью.
- Следует использовать исключительно провода и вспомогательные принадлежности, входящие в комплект поставки. Использование проводов (или вспомогательных принадлежностей) более низкой категории или с более низким значением напряжения снижает значение номинального напряжения или категорию системы «прибор + провода (или вспомогательные принадлежности)» до уровня категории или напряжения этих проводов (или вспомогательных принадлежностей).
- Перед каждым использованием необходимо проверять целостность изоляции проводов, корпуса и вспомогательных принадлежностей. Любой элемент с поврежденной изоляцией (даже частично) подлежит ремонту или должен быть выброшен на свалку.
- Не использовать прибор в электросетях, номинальное напряжение или категория которых, превышает указанные значения.
- Не использовать прибор, если его исправность, комплектность или герметичность вызывает сомнения.
- Использовать только сетевой блок питания, поставляемый производителем.
- Постоянно пользоваться средствами индивидуальной защиты.
- При использовании проводов, щупов и зажимов типа «крокодил» держать пальцы за защитной барьерной кромкой.
- Если прибор намок, то перед подключением его необходимо высушить.
- Прибор не позволяет проверить отсутствие напряжения в сети. Для этих целей следует использовать специальный инструмент (тестер отсутствия напряжения), прежде чем приступить к выполнению любых операций на сетевой установке.
- Любые ремонтные работы или процедуры метрологического контроля должны осуществляться квалифицированным и уполномоченным персоналом.

СОДЕРЖАНИЕ

1. ПЕРВОЕ ВКЛЮЧЕНИЕ	5
1.1. Состояние поставки	
1.2. Вспомогательные принадлежности	6
1.3. Запчасти	6
2. ОЗНАКОМЛЕНИЕ С ПРИБОРОМ	7
2.1. Описание	7
2.2. Лицевая панель	8
2.3. Клеммная коробка	9
2.4. Установка цветных маркеров	9
2.5. Функции кнопок	10
2.6. ЖК-дисплей	
2.7. Световые индикаторы	
2.8. Карта-памяти	12
3. НАСТРОЙКА	
3.1. Включение и выключение прибора	
3.2. Зарядка аккумуляторной батареи	
3.3. Соединение через USB или LAN Ethernet	
3.4. Соединение по сети Bluetooth, Wi-Fi или 3G-UMTS/GPRS	
3.5. Настройка прибора	16
3.6. Информация	
4. ПРИМЕНЕНИЕ	
4.1. Распределительные сети и схемы подключения прибора PEL	
4.2. Использование внешних регистраторов параметров	
4.3. Запись	
4.4. Режимы индикации измеренных значений	
5. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ПРИЛОЖЕНИЕ	
5.1. Программное обеспечение PEL Transfer	
5.2. Приложение PEL	
6. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
6.1. Расчетные условия	
6.2. Электрические характеристики	
6.3. Передача данных	
6.4. Источник питания	
6.5. Условия окружающей среды	
6.6. Механические характеристики	
6.7. Электробезопасность	
6.8. Электромагнитная совместимость	
6.9. Радиоизлучение	65
6.10. Карта-памяти	65
7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
7.1. Чистка	
7.2. Аккумуляторная батарея	66
7.3. Обновление встроенного ПО	66
8. RATHAPAT.	
9. ПРИЛОЖЕНИЕ	
9.1. Измерения	
9.2. Формулы измерений	
9.3. Допустимые типы электросетей	73
9.4. Величина в зависимости от типа распределительной сети	
9.5. Глоссарий	

1. ПЕРВОЕ ВКЛЮЧЕНИЕ

1.1. СОСТОЯНИЕ ПОСТАВКИ

Puc. 1

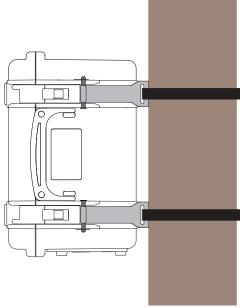

Nº	Обозначение	Количество
1	PEL106.	1
2	Черные предохранительные провода, 3 м, штекер «банан»/штекер «банан», джек-джек, герметичные с возможностью блокировки.	5
3	Черные зажимы типа «крокодил» с возможностью блокировки.	5
4	Герметичные заглушки для клемм (установлены на приборе).	9
(5)	USB-кабель типа A-B, 1,5 м.	1
6	Сумка для переноски	1
7	Комплект цветных вставок и колец для маркировки фаз на измерительных проводах и токовых датчиках.	12
8	SD-карта на 8 Гб (в приборе).	1
9	Адаптер для карт памяти SD-USB.	1
(10)	Сертификат о проверке	1
(11)	Лист данных по безопасности на нескольких языках.	1
(12)	Краткое руководство пользователя.	13

Таблица 1

1.2. ВСПОМОГАТЕЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

- MiniFlex® MA193 250 мм
- MiniFlex® MA193 350 мм
- MiniFlex® MA194 250 mm
- MiniFlex® MA194 350 mm
- MiniFlex® MA194 1000 mm
- MiniFlex® MA196 350 мм герметичные
- AmpFlex® A193 450 mm
- AmpFlex® A193 800 mm
- AmpFlex® A196 610 мм герметичные
- Клещи MN93
- Клещи MN93A
- Клещи С193
- Клещи РАС93
- Клещи E3N
- Адаптер BNC для клещей E3N
- Клещи Ј93
- Адаптер 5 А (трехфазный)
- Адаптер 5 A Essailec®
- Блок сетевых розеток + клещи E3N
- ПО Dataview
- Адаптер питания PA30W для PEL
- Регистратор параметров L452

Puc. 2

Катушка для проводов

Puc. 3

1.3. ЗАПЧАСТИ

- Комплект из 5 черных предохранительных кабелей длиной 3 м, штекер «банан»/штекер «банан», джек-джек, герметичных с возможностью блокировки
- Комплект из 5 зажимов типа «крокодил» с возможностью блокировки
- AmpFlex® A196A 610 мм герметичные
- Кабель USB-A USB-B
- Сумка для переноски № 23
- Комплект из 5 черных предохранительных кабелей (штекер «банан»/штекер «банан», джек-джек), 5 зажимов типа «крокодил» и 12 цветных вставок и колец для маркировки фаз, проводов для измерения напряжения и токовых датчиков.

Для получения дополнительной информации касательно вспомогательных принадлежностей и запчастей обращаться на наш интернет-сайт:

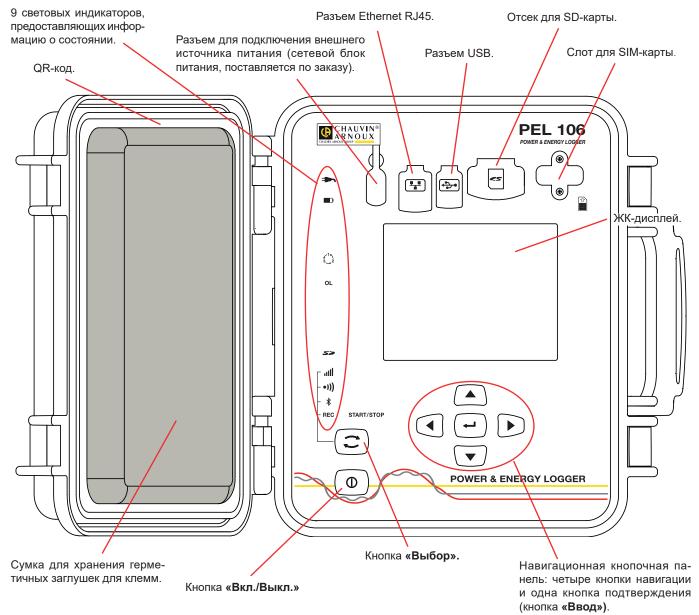
www.chauvin-arnoux.com

2. ОЗНАКОМЛЕНИЕ С ПРИБОРОМ

2.1. ОПИСАНИЕ

PEL: Power & Energy Logger (регистратор мощности и энергии)

PEL106 — это регистратор параметров мощности и энергии постоянного тока в однофазных, двухфазных и трехфазных электросетях (соединенных по схеме Y и Δ) в прочном и герметичном корпусе.

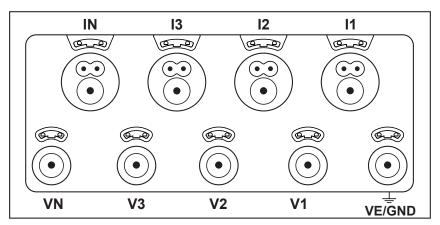

Прибор PEL включает в себя все функции записи показателей мощности/энергии, необходимые для большинства существующих в мире распределительных сетей с рабочей частотой 50 Гц, 60 Гц, 400 Гц, а также сетей постоянного тока, с многочисленными возможностями подключений в зависимости от сетевой установки. Он разработан для работы в средах 1000 В/КАТ. IV как внутри помещений, так и снаружи.

Прибор PEL оснащен аккумуляторной батареей для обеспечения бесперебойной работы в случае отключения электропитания. Аккумуляторная батарея заряжается во время выполнения измерений.

Регистратор выполняет следующие функции:

- Прямые измерения напряжения до 1000 B/KAT. IV.
- Прямые измерения тока в диапазоне от 5 мА до 10 000 А в зависимости от используемых токовых датчиков...
- Измерение тока нейтрали на 4-й клемме тока.
- Измерение напряжения между «землей» и нейтралью на 5-й клемме напряжения.
- Измерение активной (Вт), реактивной (вар) и полной (ВА) мощности.
- Измерение активной мощности основной частоты, несимметрии и гармоник.
- Измерение коэффициентов несимметрии тока и напряжения по методу, предусмотренному стандартом IEEE 1459.
- Измерение активной энергии прямого и обратного направления (Вт·ч), реактивной энергии в каждом из 4 квадрантов (вар·ч) и полной энергии (ВА·ч).
- Коэффициент мощности (PF), cos φ и tan Φ.
- Пик-фактор.
- Коэффициент гармонических искажений (THD) для токов и напряжений.
- Измерение гармоник до 50-го порядка для рабочей частоты 50/60Гц для токов и напряжений.
- Измерение частоты.
- Измерение среднеквадратических значений и значений постоянного тока отдельно по каждой фазе.
- ЖК-дисплей с голубой подсветкой (одновременное отображение 4 величин).
- Хранение измеренных и вычисленных значений на SD- или SDHC-карте.
- Автоматическое распознавание подключенных токовых датчиков.
- Настройка коэффициентов трансформации для входов по току и напряжению.
- Поддержка 17 типов подключения или распределительных электросетей.
- Связь с регистраторами параметров Data Logger L452 (опция) (максимум 4) для регистрации напряжений, токов и событий.
- 32 тревожных сигнала, программируемых для измерений или аналоговых входов с помощью Data Logger L452 (опция), связь с которым устанавливается по Bluetooth.
- Соединение через USB или LAN (сеть Ethernet), Bluetooth, Wi-Fi и 3G-UMTS/GPRS.
- Программное обеспечение PEL Transfer для настройки прибора, сбора и передачи данных на ПК в режиме реального времени.
- Приложение на базе Android для передачи данных в режиме реального времени и настройки параметров PEL через смартфон или планшет.
- Сервер IRD для передачи данных по приватным IP-адресам.
- Отправка регулярных отчетов по электронной почте.

2.2. ЛИЦЕВАЯ ПАНЕЛЬ



Puc. 4

Разъемы оснащены крышками из эластомера, обеспечивающими их герметичность (IP67).

Сетевой блок питания для зарядки аккумуляторной батареи поставляется по заказу. В нем нет необходимости, поскольку аккумуляторная батарея заряжается каждый раз, когда прибор работает от сети (если не была отключена подача питания через входы по напряжению, см. § 3.1.3).

2.3. КЛЕММНАЯ КОРОБКА

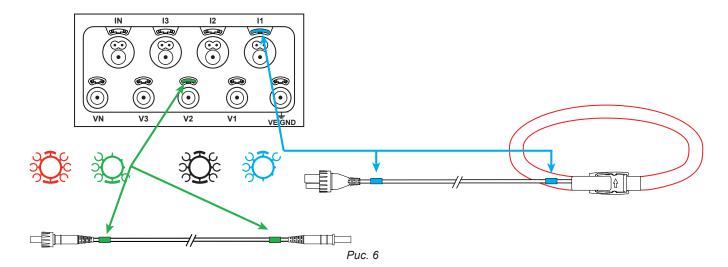
4 входа по току (специальные 4-контактные разъемы).

5 входов по напряжению (предохранительные штекеры).

Puc. 5

Заглушки служат для обеспечения герметичности (ІР67) клемм, когда они не используются.

При подключении токового датчика или провода для измерения напряжения, вставляйте соединители до упора для обеспечения герметичности прибора. Убирать заглушки в сумку, закрепленную на крышке прибора.

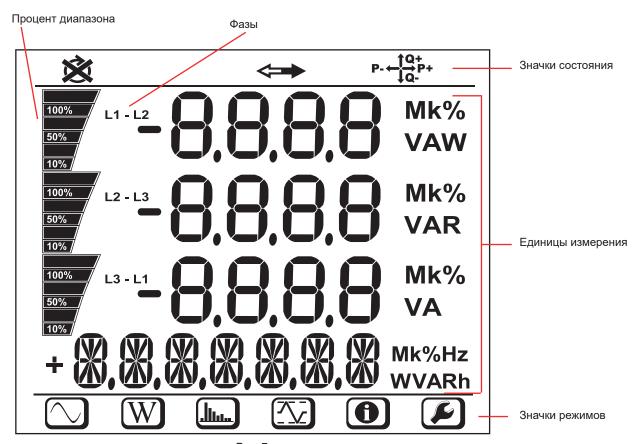

Прежде чем подключить токовый датчик, необходимо ознакомится с его руководством по эксплуатации.

Небольшие отверстия над клеммами предназначены для установки цветных вставок, которые случат для маркировки входов по току или напряжению.

2.4. УСТАНОВКА ЦВЕТНЫХ МАРКЕРОВ

Для выполнения измерений на нескольких фазах необходимо сперва промаркировать вспомогательные приспособления и клеммы с помощью цветных колец и вставок, входящих в комплект поставки прибора, присваивая каждой клемме определенный цвет.

- Отцепить вставки соответствующего цвета и поместить их в отверстия над клеммами (большие предназначены для клемм тока, а маленькие для клемм напряжения).
- Закрепить кольцо того же цвета на каждом конце провода, который будет подключаться к клемме.



2.5. ФУНКЦИИ КНОПОК

Кнопка	Описание
0	Кнопка «Вкл./Выкл.»: Включает и выключает прибор. Замечание: Прибор нельзя выключить, когда он подключен к сети питания (либо через измерительные входы, либо через сетевой блок питания) или выполняется/ожидается запись данных.
	Кнопка «Выбор»: Долгое нажатие кнопки позволяет активировать или деактивировать соединение по Bluetooth, Wi-Fi или 3G-UMTS/GPRS, а также запустить или остановить запись данных.
	Кнопка «Ввод»: В режиме «Настройка» она позволяет выбрать параметр, который необходимо изменить. В режимах индикации измерений и показателей мощности она позволяет отображать углы сдвига фаз или долевые значения энергии.
AV4 >	Кнопки навигации: Они позволяют просматривать данные, отображаемые на ЖК-дисплее.

Таблица 2

2.6. ЖК-ДИСПЛЕЙ

Puc. 7

Когда пользователь не проявляет своего присутствия в течение 3 минут, подсветка гаснет. Для повторного включения подсветки необходимо нажать на одну из кнопок навигации (▲▼◀ ▶).

На верхней и нижней панели инструментов отображаются следующие индикации:

Значок	Описание
×	Индикатор обратного порядка следования фаз или отсутствия фазы (отображается для трехфазных распределительных сетей только в режиме измерений, см. пояснение ниже).
⇐	Данные, доступные для записи.
P- ← ↑Q+ ↓Q-	Индикация квадранта мощности.
	Режим индикации измерений (мгновенные значения). См. § 4.4.1.
W	Режим индикации показателей мощности и энергии. См. § 4.4.2.
	Режим индикации гармоник. См. § 4.4.3.
A	Режим индикации макс. значений См. § 4.4.4.
•	Информационный режим См. § 3.6.
P	Режим настройки. См. § 3.5.

Таблица 3

Порядок следования фаз

Значок порядка следования фаз отображается только в режиме измерений.

Порядок следования фаз определяется каждую секунду. Если он неверен, отображается значок

- Порядок следования фаз для входов по напряжению отображается, только когда отображаются значения напряжения.
- Порядок следования фаз для входов по току отображается, только когда отображаются значения силы тока.
- Порядок следования фаз для входов по напряжению и по току отображается, только когда отображаются значения мощности.
- Параметры источника и нагрузки необходимо задавать с помощью PEL Transfer для определения направления энергии (импортируемой или экспортируемой)

2.7. СВЕТОВЫЕ ИНДИКАТОРЫ

Световые индикаторы	Цвет и функция
*	Зеленый световой индикатор: электросеть Световой индикатор горит: прибор подключен к электросети посредством внешнего источника питания (сетевой блок питания, поставляется по заказу). Световой индикатор не горит: прибор работает от аккумуляторной батареи.
	Оранжевый/красный световой индикатор: аккумуляторная батарея Световой индикатор не горит: полный заряд аккумуляторной батареи. Оранжевый световой индикатор горит: аккумуляторная батарея заряжается. Оранжевый световой индикатор мигает: аккумулятор заряжается после полной разрядки. Красный световой индикатор мигает: низкий уровень заряда аккумуляторной батареи (и отсутствие питания от сети).
3_2	Красный световой индикатор: порядок следования фаз Световой индикатор не горит: верное направление чередования фаз. Световой индикатор мигает: неверное направление чередования фаз. Иными словами, когда имеет место один из следующих случаев: □ сдвиг фаз между фазными токами превышает 30° по отношению к норме (120° в трехфазной сети и 180° в двухфазной сети). □ сдвиг фаз между фазными напряжениями превышает 10° по отношению к норме. □ сдвиг фаз между током и напряжением в каждой фазе превышает 60° по отношению к 0° (на нагрузке) или 180° (на источнике).
OL	Красный световой индикатор: выход за пределы диапазона измерения Световой индикатор не мигает: отсутствие выхода за пределы диапазона на входах/ Световой индикатор мигает: выход за пределы диапазона, по меньшей мере, на одном входе или провод подключен к неверной клемме.

Световые индикаторы	Цвет и функция
55	Красный/зеленый световой индикатор: SD-карта Зеленый световой индикатор горит: SD-карта распознана и не заблокирована. Красный световой индикатор горит: SD-карта отсутствует, заблокирована или не распознана. Красный световой индикатор мигает: выполняется инициализация SD-карты. Световой индикатор мигает поочередно красным и зеленым цветом: память SD-карты заполнена. Бледно-зеленый световой индикатор мигает: память SD-карты будет заполнена до завершения выполняемой записи.
atl	Зеленый световой индикатор: 3G-UMTS/GPRS Световой индикатор не горит: соединение 3G-UMTS/GPRS отключено (неактивно) Световой индикатор горит: соединение 3G-UMTS/GPRS активировано, но передача данных не осуществляется Световой индикатор мигает: соединение 3G-UMTS/GPRS активировано и осуществляется передача данных
-1))	Зеленый световой индикатор: Wi-Fi Световой индикатор не горит: Wi-Fi не активирован. Световой индикатор горит: Wi-Fi активирован, но передача данных не осуществляется. Световой индикатор мигает: выполняется передача данных по сети Wi-Fi.
*	Синий световой индикатор: Bluetooth Световой индикатор не горит: соединение по Bluetooth деактивировано. Световой индикатор горит: соединение по Bluetooth активировано, но передача данных не осуществляется. Световой индикатор мигает: соединение по Bluetooth активировано и выполняется передача данных.
- 	Зеленый и желтый световые индикаторы: Ethernet Зеленый световой индикатор не горит: не активировано подключение Ethernet. Зеленый световой индикатор мигает: активировано подключение Ethernet. Желтый световой индикатор мигает: активировано подключение Ethernet. Желтый световой индикатор не горит: не произошла инициализация батарейки. Желтый световой индикатор мигает: инициализация батарейки выполнена правильно. Желтый световой индикатор быстро мигает: получение нового IP-адреса. Желтый световой индикатор мигает 2 раза, затем гаснет: недействительный IP-адрес, присвоенный серверу DHCP. Желтый световой индикатор горит: происходит передача данных через Ethernet.
REC	Красный световой индикатор: запись Световой индикатор не горит: отсутствие записи. Световой индикатор мигает: запись в режиме ожидания. Световой индикатор горит: регистратор в режиме записи.
0	Зеленый/оранжевый световой индикатор: вкл./выкл. Зеленый световой индикатор горит: прибор работает от входы по напряжению. Оранжевый световой индикатор мигает: прибор работает от аккумуляторной батареи. Питание через входы по напряжению отключено (см. § 3.1.3) или слишком низкое напряжение питания.

Таблица 4

2.8. КАРТА-ПАМЯТИ

Прибор PEL поддерживает SD-, SDHC и SDXC-карты, отформатированные в FAT32, емкостью до 32 Гб.


В комплект поставки прибора PEL входит отформатированная SD-карта. Для установки новой SD-карты необходимо:

- Открыть крышку из эластомера с маркировкой 🗲 🛎.
- Нажать на SD-карту, которая установлена в приборе, и извлечь ее.

Внимание! Не извлекать SD-карту в процессе записи.

- Удостовериться, что новая SD-карта не заблокирована.
- Желательно отформатировать SD-карту с помощью ПО PEL Transfer (см. § 5), в противном случае, используя ПК.

■ Установить на место крышку для обеспечения герметичности прибора.

3. НАСТРОЙКА

Перед записью данных прибор PEL следует настроить. Данная настройка предусматривает различные этапы:

- Установить соединение по USB, Bluetooth, Ethernet, Wi-Fi или 3G-UMTS/GPRS.
- Выбрать подключение в зависимости от типа распределительной сети.
- Подключить токовые датчики.
- При необходимости определить номинальное напряжение первичной и вторичной обмотки.
- При необходимости определить номинальный ток первичной обмотки и номинальный ток нейтрали первичной обмотки.
- Выбрать период агрегации.

Данная настройка выполняется в режиме «Настройка» (см. § 3.5) или посредством ПО PEL Transfer (см. § 5). Во избежание случайного внесения изменений прибор PEL нельзя перенастроить в процессе записи, или если запись находится в режиме ожидания.

3.1. ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ ПРИБОРА

3.1.1. ВКЛЮЧЕНИЕ

■ Подключить прибор PEL к электросети (напряжением как минимум 100 Вперем. тока или 140 Впост. тока) и он включится автоматически (если не отключена подача питания через входы по напряжению, см. § 3.1.3). В противном случае нажать на кнопку «Вкл./Выкл.» и удерживать в течение 2 секунд. Загорается световой индикатор кнопки «Вкл./Выкл.».

Аккумуляторная батарея автоматически начинает заряжаться, когда регистратор PEL подключен к источнику напряжения. Длительность автономной работы от аккумуляторной батареи составляет около одного часа при полном заряде. Таким образом, прибор может бесперебойно работать при кратковременных отключениях электропитания.

3.1.2. ВЫКЛЮЧЕНИЕ

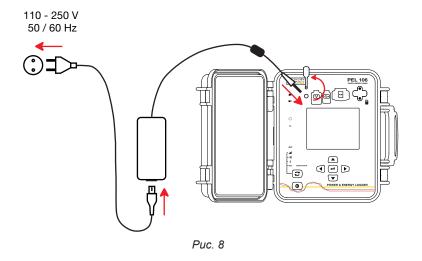
Прибор PEL нельзя выключить, пока он подключен к источнику питания или пока выполняется (или ожидается) запись данных. Такой принцип работы предусмотрен во избежание случайного прекращения пользователем процесса записи.

Прибор PEL автоматически выключается через 3, 10 или 15 минут, в зависимости от выбранной настройки, после его отключения от источника питания или завершения записи.

В противном случае для выключения прибора PEL необходимо:

- Отсоединить все входные клеммы и внешний источник питания, если он подключен.
- Нажать на кнопку «Вкл./Выкл.» и удерживать ее более 2 секунд, пока не загорятся все световые индикаторы, затем отпустить.
- Прибор PEL выключается и все световые индикаторы гаснут.

3.1.3. ОТКЛЮЧЕНИЕ ПОДАЧИ ПИТАНИЯ ЧЕРЕЗ ВХОДЫ ПО НАПРЯЖЕНИЮ


Энергопотребление при питании через входы по напряжению составляет от 10 до 15 Вт. Некоторые генераторы напряжения не выдерживают такую нагрузку. Таким примером могут служить калибраторы напряжения или емкостные делители напряжения. Ели необходимо выполнить измерения на этих приборах, тогда следует отключить питание прибора через входы по напряжению.

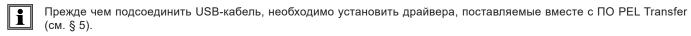
Для отключения питания прибора через входы по напряжению нужно одновременно нажать кнопки **«Выбор»** и **«Вкл.»** выкл.» и удерживать более 2 секунд. Кнопка **«Вкл./Выкл»** мигает оранжевым цветом.

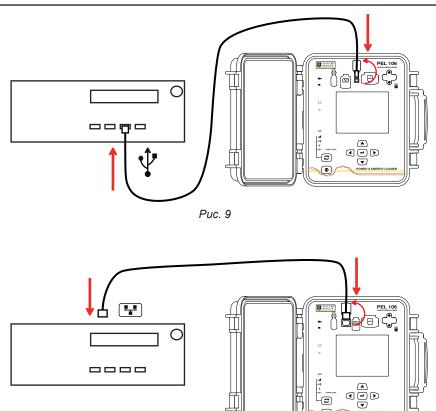
Тогда для подачи питания на прибор и зарядки аккумуляторной батареи следует воспользоваться сетевым блоком питания, который поставляется по заказу (см. § 1.2).

3.2. ЗАРЯДКА АККУМУЛЯТОРНОЙ БАТАРЕИ

Аккумуляторная батарея начинает заряжаться при подключении прибора к источнику напряжения. Но если питание через входы по напряжению отключено (см. предыдущий §), необходимо воспользоваться сетевым блоком питания (поставляется по заказу).

- Снять крышку из эластомера, защищающую разъем для подключения источника питания.
- Подключить сетевой блок питания к прибору и электросети.


Прибор включается.


Световой индикатор горит до полного заряда аккумуляторной батареи.

3.3. СОЕДИНЕНИЕ ЧЕРЕЗ USB ИЛИ LAN ETHERNET

Соединение через USB и Ethernet позволяет настроить прибор с помощью ПО PEL Transfer, отображать результаты измерений и загружать записи данных на ПК.

- Снять крышку из эластомера, защищающую разъем.
- Подсоединить USB-кабель, входящий в комплект поставки, или кабель Ethernet (не входит в комплект поставки) к прибору и ПК.

Puc. 10

Затем, независимо от типа выбранного соединения, открыть ПО PEL Transfer (см. § 5), чтобы установить соединение между прибором и ПК.

Подключение USB-кабеля или кабеля Ethernet не приводит к включению прибора и зарядке аккумуляторной батареи.

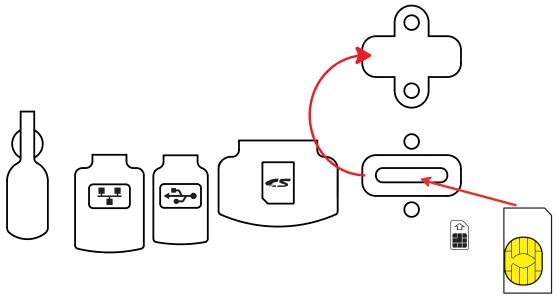
Для соединения через LAN Ethernet прибор PEL имеет IP-адрес.

При настройке прибора с помощью ПО PEL Transfer, если установлен флажок в окошке «Активировать DHCP» (динамический IP-адрес), прибор отправляет запрос на сервер DHCP сети для автоматического получения IP-адреса.

Используемым протоколом Интернета является UDP или TCP. Порт 3041 используется по умолчанию. Его можно изменить в PEL Transfer так, чтобы предоставлялось разрешение на соединение между ПК и несколькими приборами, находящимися за маршрутизатором.

Также доступно автоматическое получение IP-адреса, когда выбран DHCP и сервер DHPC не обнаружен в течение 60 секунд. Прибору PEL по умолчанию присваивается IP-адрес 169.254.0.100. Данный режим автоматического получения IP-адреса совместим с APIPA.

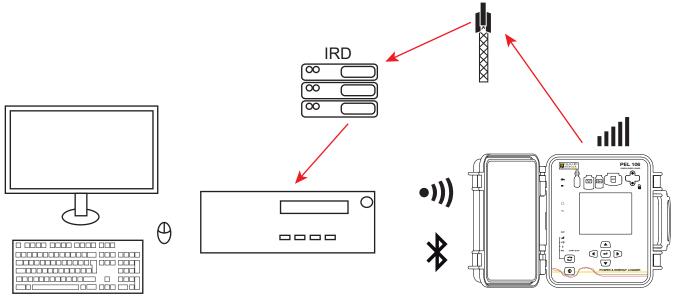
Может понадобиться витая пара.



Существует возможность изменить параметры сети при соединении через LAN Ethernet, но после изменения параметров, соединение будет потеряно. Для этих целей желательно использовать соединение через USB.

3.4. СОЕДИНЕНИЕ ПО СЕТИ BLUETOOTH, WI-FI ИЛИ 3G-UMTS/GPRS

Данные виды соединения позволяют настроить прибор с помощью ПО PEL Transfer, отображать результаты измерений и загружать записи данных на ПК, смартфон или планшет.


Для установления соединения 3G-UMTS/GPRS в прибор необходимо вставить SIM-карту. Открутите два винта на крышке и снимите ее. Вставьте SIM-карту в указанном направлении. Установите на место крышку и закрутите 2 винта.

Puc. 11

Также понадобится указать APN (Access Point Name, имя точки доступа) и соответствующий PIN -код к SIM-карте с помощью ПО PEL Transfer в разделе «Настройка/Связь/3G». Сервер IRD включается автоматически.

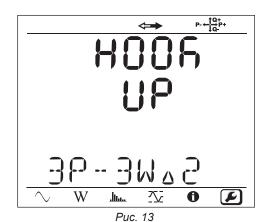
- Нажать на кнопку **«Выбор»** и удерживать в нажатом положении. Световые индикаторы **REC**, *****, •**)))** и **।** и загораются один за другим на 3 секунды каждый.
- Отпустить кнопку **«Выбор»** (こ), когда загорается нужная функция.
 - Если опустить кнопку, когда горит световой индикатор **REC**, запускается или прекращается запись данных.
 - Если опустить кнопку, когда горит световой индикатор 🔻, активируется или деактивируется Bluetooth.
 - Если опустить кнопку, когда горит световой индикатор •**))**, активируется или деактивируется Wi-Fi.
 - Если опустить кнопку, когда горит световой индикатор IIIII, активируется или деактивируется 3G-UMTS/GPRS.

Puc. 12

Если ваш компьютер не поддерживает функцию Bluetooth, необходимо воспользоваться адаптером USB-Bluetooth. Если отсутствуют драйвера для данного периферийного устройства, то Windows устанавливает их автоматически.

Процедура сопряжения зависит от вашей операционной системы, устройства Bluetooth и драйверов. При необходимости коду спаривания соответствует 0000. Данный код изменить в PEL Transfer нельзя.

При соединении 3G-UMTS/GPRS данные, передаваемые прибором, проходят через сервер IRD, размещенный в компании Chauvin Arnoux. Для их получения на ПК необходимо активировать сервер IRD в программе PEL Transfer.


3.5. НАСТРОЙКА ПРИБОРА

Существует возможность настроить несколько основных функций непосредственно на приборе. Для полной настройки необходимо программное обеспечение PEL Transfer (см. § 5).

Чтобы войти в режим «Настройка» через прибор, нажать на кнопку **◄** или **▶**, пока не будет выбран значок

Отображается следующий экран:

Если прибор PEL уже находится в процессе настройки через ПО PEL Transfer, то войти в режим «Настройка» на приборе невозможно. В этом случае при попытке настроить прибор на дисплее отображается индикация LOCK (ЗАБЛОКИРО-BAHO).

3.5.1. ТИП СЕТИ

Чтобы изменить сеть, необходимо нажать кнопку **«Ввод»** . Мигает наименование сети. Использовать кнопки ▲ и ▼ для выбора другой сети из нижеприведенного списка.

Обозначение	Сеть
1P-2W	Однофазная 2-проводная
1P-3W	Однофазная 3-проводная
3P-3W∆2	Трехфазная 3-проводная, соединенная по схеме ∆ (с 2 токовыми датчиками)
3P-3W∆3	Трехфазная 3-проводная, соединенная по схеме ∆ (с 3 токовыми датчиками)
3P-3W∆b	Трехфазная 3-проводная, соединенная по схеме ∆, симметричная
3P-4WY	Трехфазная 4-проводная, соединенная по схеме Ү
3P-4WYb	Трехфазная 4-проводная, соединенная по схеме Y, сбалансированная (измерение напряжения, фиксированные значения)
3P-4WY2	Трехфазная 4-проводная, соединенная по схеме 2,5-элементной звезды
3P-4W∆	Трехфазная 4-проводная, соединенная по схеме ∆
3P-3WY2	Трехфазная 3-проводная, соединенная по схеме Y (с 2 токовыми датчиками)
3P-3WY3	Трехфазная 3-проводная, соединенная по схеме Y (с 3 токовыми датчиками)
3P-3WO2	Трехфазная 3-проводная, соединенная по схеме разомкнутого Δ (с 2 токовыми датчиками)
3P-3WO3	Трехфазная 3-проводная, соединенная по схеме разомкнутого ∆ (с 3 токовыми датчиками)
3P-4WO	Трехфазная 4-проводная, соединенная по схеме разомкнутого ∆
dC-2W	Сеть постоянного тока 2-проводная
dC-3W	Сеть постоянного тока 3-проводная
dC-4W	Сеть постоянного тока 4-проводная

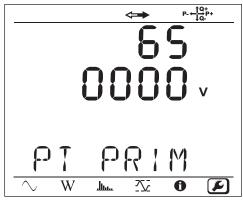
Таблица 5

Подтвердить свой выбор, нажав кнопку «Ввод»

3.5.2. ТОКОВЫЕ ДАТЧИКИ

Подключить токовые датчики на приборе.

Прибор автоматически распознает подключенные токовые датчики. Он обращается к клемме I1. Если ничего не найдено, он обращается к клемме I2, а затем — I3. Если выбранная сеть включает датчик тока, подключенный к клемме N, также проверяется клемма IN.


Когда датчики распознаны, на дисплее отображаются их коэффициенты трансформации.

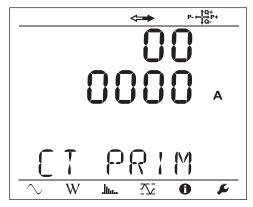
Тип токовых датчиков должен быть идентичен, за исключением датчика тока нейтрали, тип которого может отличаться. В противном случае прибор будет обрабатывать только данные датчика, подключенного к клемме I1.

3.5.3. НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ ПЕРВИЧНОЙ ОБМОТКИ

Нажать кнопку ▼ для перехода к следующему экрану.

Puc. 14

Чтобы изменить значение номинального напряжения первичной обмотки, необходимо нажать кнопку **«Ввод»** кнопки **▲**, **▼**, **▲** и **▶** для выбора значения напряжения в диапазоне от 50 до 650 000 В. Затем подтвердить выбор, нажав кнопку **«Ввод»**


3.5.4. НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ ВТОРИЧНОЙ ОБМОТКИ

Нажать кнопку ▼ для перехода к следующему экрану.

Чтобы изменить значение номинального напряжения вторичной обмотки, необходимо нажать кнопку **«Ввод»** кнопки **▲**, **▼**, **▲** и **▶** для выбора значения напряжения в диапазоне от 50 до 1000 В. Затем подтвердить выбор, нажав кнопку **«Ввод»**

3.5.5. НОМИНАЛЬНЫЙ ТОК ПЕРВИЧНОЙ ОБМОТКИ

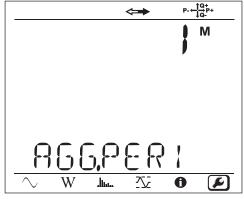
Нажать кнопку ▼ для перехода к следующему экрану.

Puc. 15

В зависимости от типа используемого токового датчика MiniFlex®/AmpFlex®, клещей MN или адаптерного блока ввести значение номинального тока первичной обмотки. Для этого нажать кнопку **«Ввод»**. Использовать кнопки **▲**, **▼**, **▲** и **▶** для выбора значения тока.

- AmpFlex® A196A или A193и MiniFlex® MA193, MA194 или MA196: 100, 400, 2000 или 10 000 A (в зависимости от датчика)
- Клещи РАС93 и клещи С193: автоматический выбор значения 1000 А
- Клещи MN93A на 5 A, адаптер на 5 A: в диапазоне от 5 до 25 000 A
- Клещи MN93A на 100 А: автоматический выбор значения 100 А
- Клещи MN93: автоматический выбор значения 200 A
- Клещи E3N: 10 или 100 A
- Клещи Ј93: автоматический выбор значения 3500 А

Подтвердить значение, нажав кнопку **«Ввод»**


3.5.6. НОМИНАЛЬНЫЙ ТОК НЕЙТРАЛИ ПЕРВИЧНОЙ ОБМОТКИ

Нажать кнопку ▼ для перехода к следующему экрану.

Если токовый датчик подключается к клемме тока нейтрали, необходимо также ввести значение номинального тока нейтрали первичной обмотки, выполнив вышеописанную процедуру.

3.5.7. ПЕРИОД АГРЕГАЦИИ

Нажать кнопку ▼ для перехода к следующему экрану.

Puc 16

Чтобы изменить период агрегации, нажать кнопку **«Ввод»** , затем использовать кнопки ▲ и ▼ для выбора значения (1–6, 10, 12, 15, 20, 30 или 60 минут).

Подтвердить значение, нажав кнопку «Ввод»

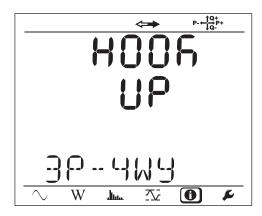
3.6. ИНФОРМАЦИЯ

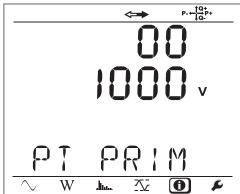
Чтобы войти в режим «Информация» через прибор, нажать на кнопку **◄** или **▶**, пока не будет выбран значок

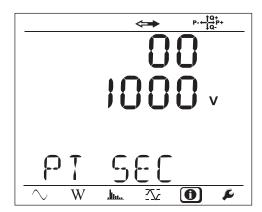
С помощью кнопок ▲ и ▼ прокрутить информацию о приборе:

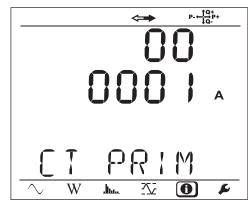
Тип сети

Номинальное напряжение первичной обмотки



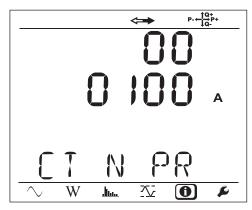

Номинальное напряжение вторичной обмотки



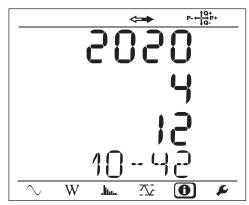

Номинальный ток первичной обмотки

 ■ Номинальный ток нейтрали первичной обмотки (если к клемме I_N подключен токовый датчик)

■ Период агрегации

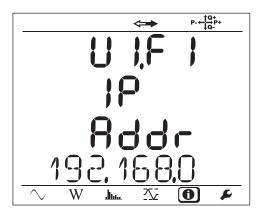


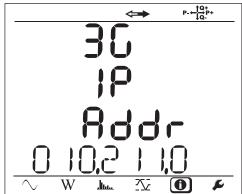
■ Дата и время

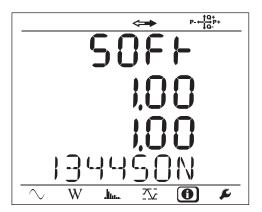


■ ІР-адрес (бегущая строка)

■ Адрес Wi-Fi (бегущая строка)




■ 3G-адрес (бегущая строка)



- Версия ПО
 - 1-я цифра = версия ПО ЦСП
 - 2-я цифра = версия ПО микропроцессора
 - Бегущий серийный номер (также указан на этикетке QR-кода, наклеенной на внутренней стороне крышки прибора PEL)

По истечении 3 минут отсутствия нажатия кнопки **«Ввод»** или **«Навигация»** возвращается индикация экрана измерения

4. ПРИМЕНЕНИЕ

После настройки прибора он готов к эксплуатации.

4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ СЕТИ И СХЕМЫ ПОДКЛЮЧЕНИЯ ПРИБОРА PEL

Сначала необходимо подключить токовые датчики и провода для измерения напряжения на вашей сетевой установке в соответствии с типом распределительной сети. Прибор PEL должен быть настроен (см. § 3.5) для выбранной распределительной сети.

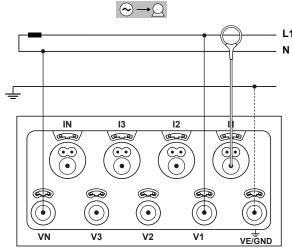
Источник

Нагрузка

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

Однако после завершения записи данных и их загрузки на ПК можно изменить направление токов (I1, I2 или I3) с помощью ПО PEL Transfer. Это позволит откорректировать вычисления мощности.

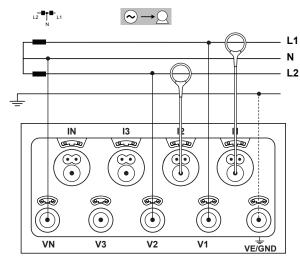
Зажимы типа «крокодил» могут фиксироваться на проводах для измерения напряжения, что обеспечивает герметичность системы.



При выполнении измерений в системах с нейтралью ток можно измерить с помощью токового датчика или, при его отсутствии, вычислить.

4.1.1. ОДНОФАЗНАЯ 2-ПРОВОДНАЯ: 1P-2W

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле» (в порядке опции для данного типа сети).
- Подсоединить клемму V1 к фазе L1.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик IN к общему проводу (в порядке опции для данного типа сети).

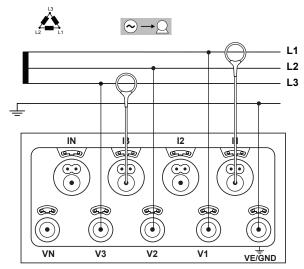

Puc. 17

4.1.2. ДВУХФАЗНАЯ 3-ПРОВОДНАЯ (НА БАЗЕ ТРАНСФОРМАТОРА С ОТВОДОМ ОТ СРЕДНЕЙ ТОЧКИ): 1P-3W

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле» (в порядке опции для данного типа сети).
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подключить токовый датчик IN к нейтрали (в порядке опции для данного типа сети).
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

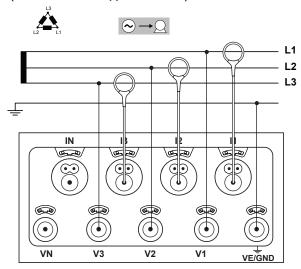
Puc. 18


4.1.3. ТРЕХФАЗНЫЕ СЕТИ ПИТАНИЯ 3-ПРОВОДНЫЕ

4.1.3.1. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Δ (С 2 ТОКОВЫМИ ДАТЧИКАМИ): 3P-3W Δ 2

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I3 к фазе L3.

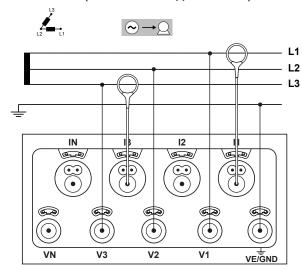
Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.



Puc. 19

4.1.3.2. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ ∆ (С 3 ТОКОВЫМИ ДАТЧИКАМИ): 3P-3W∆3

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

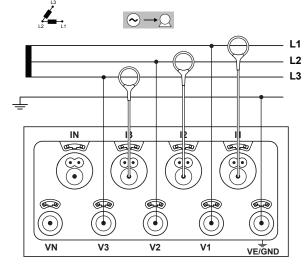


Puc. 20

4.1.3.3. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ РАЗОМКНУТОГО ∆ (С 2 ТОКОВЫМИ ДАТЧИКАМИ): 3P-3W02

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I3 к фазе L3.
- i

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

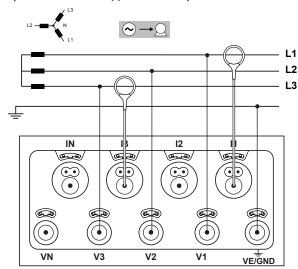


Puc. 21

4.1.3.4. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ РАЗОМКНУТОГО ∆ (С 3 ТОКОВЫМИ ДАТЧИКАМИ): 3P-3W03

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.
- i

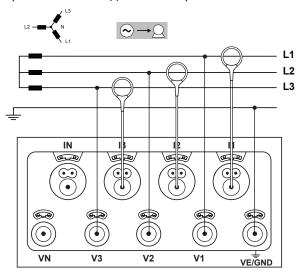
Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.



Puc. 22

4.1.3.5. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Y (С 2 ТОКОВЫМИ ДАТЧИКАМИ): 3P-3WY2

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I3 к фазе L3.

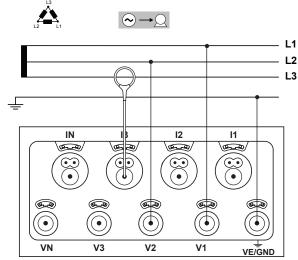

Puc. 23

4.1.3.6. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Ү (С 3 ТОКОВЫМИ ДАТЧИКАМИ): 3Р-3WY

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

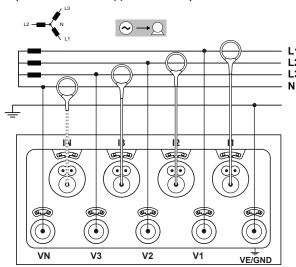
Puc. 24


4.1.3.7. ТРЕХФАЗНАЯ 3-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Δ , СИММЕТРИЧНАЯ (С 1 ТОКОВЫМИ ДАТЧИКАМИ):

3P-3W03

- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

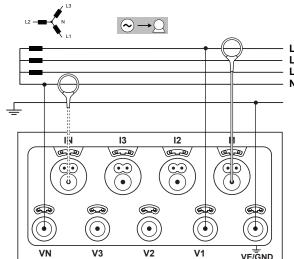

Puc. 25

4.1.4. ТРЕХФАЗНЫЕ СЕТИ ПИТАНИЯ 4-ПРОВОДНЫЕ, СОЕДИНЕННЫЕ ПО СХЕМЕ Ү

4.1.4.1. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Y (С 4 ТОКОВЫМИ ДАТЧИКАМИ): 3P-4WY

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик IN к нейтрали.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

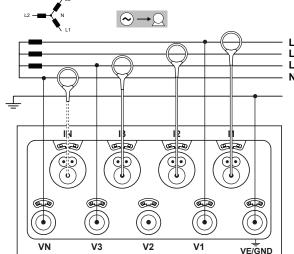
Puc. 26


4.1.4.2. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Y, СИММЕТРИЧНАЯ (С 2 ТОКОВЫМИ ДАТЧИКАМИ):

3P-4WYB

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подключить токовый датчик IN к нейтрали.
- Подключить токовый датчик I1 к фазе L1.

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.



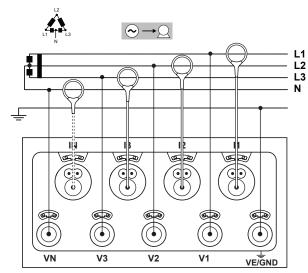
Puc. 27

4.1.4.3. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ 2,5-ЭЛЕМЕНТНОЙ ЗВЕЗДЫ (С 4 ТОКОВЫМИ ДАТ-ЧИКАМИ): 3P-4WY2

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик IN к нейтрали.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

Puc. 28

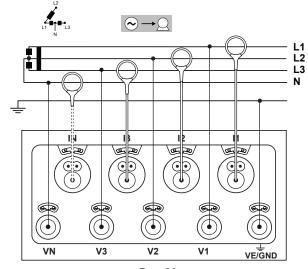
4.1.5. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Δ


Трехфазная 4-проводная конфигурация сети, соединенной по схеме Δ (High Leg). Отсутствуют подключенные трансформаторы напряжения: считается, что сетевая установка, на которой проводятся измерения, представляет собой низковольтную распределительную сеть.

4.1.5.1. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ Δ (С 4 ТОКОВЫМИ ДАТЧИКАМИ): $3P-4W\Delta$

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик IN к нейтрали.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

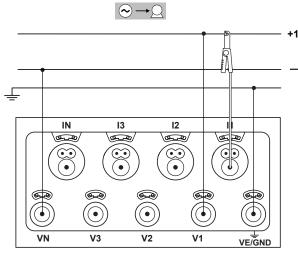
Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.



Puc. 29

4.1.5.2. ТРЕХФАЗНАЯ 4-ПРОВОДНАЯ, СОЕДИНЕННАЯ ПО СХЕМЕ РАЗОМКНУТОГО ∆ (С 4 ТОКОВЫМИ ДАТЧИКАМИ): 3P-4WO

- Подсоединить клемму N к нейтрали.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к фазе L1.
- Подсоединить клемму V2 к фазе L2.
- Подсоединить клемму V3 к фазе L3.
- Подключить токовый датчик IN к нейтрали.
- Подключить токовый датчик I1 к фазе L1.
- Подключить токовый датчик I2 к фазе L2.
- Подключить токовый датчик I3 к фазе L3.

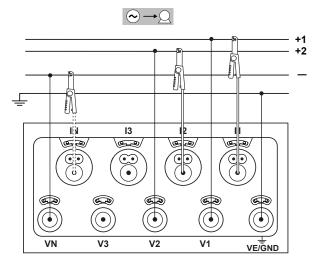

Puc. 30

4.1.6. СЕТИ ПИТАНИЯ ПОСТОЯННОГО ТОКА

4.1.6.1. СЕТЬ ПОСТОЯННОГО ТОКА 2-ПРОВОДНАЯ: DC-2W

- Подсоединить клемму N к общему проводу.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к проводу +1.
- Подключить токовый датчик IN к общему проводу.
- Подключить токовый датчик I1 к проводу +1.
- i

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.

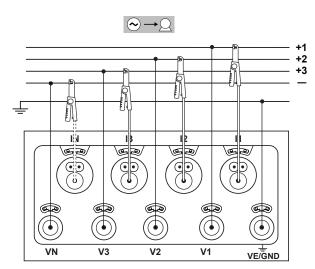


Puc. 31

4.1.6.2. СЕТЬ ПОСТОЯННОГО ТОКА 3-ПРОВОДНАЯ: DC-3W

- Подсоединить клемму N к общему проводу.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к проводу +1.
- Подсоединить клемму V2 к проводу +2.
- Подключить токовый датчик IN к общему проводу.
- Подключить токовый датчик I1 к проводу +1.
- Подключить токовый датчик I2 к проводу +2.
- i

Следить за тем, чтобы стрелка токового датчика всегда была обращена в сторону нагрузки. Таким образом, угол сдвига фаз для измерения мощности и для прочих фазных измерений будет верным.



Puc. 32

4.1.6.3. СЕТЬ ПОСТОЯННОГО ТОКА 4-ПРОВОДНАЯ: DC-4W

- Подсоединить клемму N к общему проводу.
- Подсоединить клемму VE/GND к «земле»
- Подсоединить клемму V1 к проводу +1.
- Подсоединить клемму V2 к проводу +2.
- Подсоединить клемму V3 к проводу +3.
- Подключить токовый датчик IN к общему проводу.
- Подключить токовый датчик I1 к проводу +1.
- Подключить токовый датчик I2 к проводу +2.
- Подключить токовый датчик I3 к проводу +3.

Puc. 33

4.2. ИСПОЛЬЗОВАНИЕ ВНЕШНИХ РЕГИСТРАТОРОВ ПАРАМЕТРОВ

Прибор PEL106 может устанавливать соединение максимум с 4 устройствами Data Logger L452. Связь устанавливается по Bluetooth. Она настраивается посредством ПО PEL Transfer.

Регистраторы Data Logger L452 позволяют:

- регистрировать значения напряжения постоянного тока до 10 В,
- регистрировать значения постоянного тока в диапазоне от 4 до 20 мА,
- подсчитывать число импульсов,
- выявлять события на дискретных входах.

При подключении к прибору PEL106 они передают на него данные. Тогда данные отображаются в режиме реального времени и регистрируются вместе с записями.

Для использования регистраторов Data Logger L452 следует обращаться к их руководствам по эксплуатации.

4.3. ЗАПИСЬ

Для запуска записи необходимо:

- Удостовериться, что SD-карта установлена (не заблокирована и ее память не заполнена) в прибор PEL.
- Нажать на кнопку **«Выбор»** и удерживать в нажатом положении. Световые индикаторы **REC**, •**))** и ***** загораются один за другим на 3 секунды каждый.
- Отпустить кнопку **«Выбор»** , когда загорается световой индикатор **REC**. Запись запускается и световой индикатор **REC** начинает мигать с частотой два раза каждые 5 секунд.

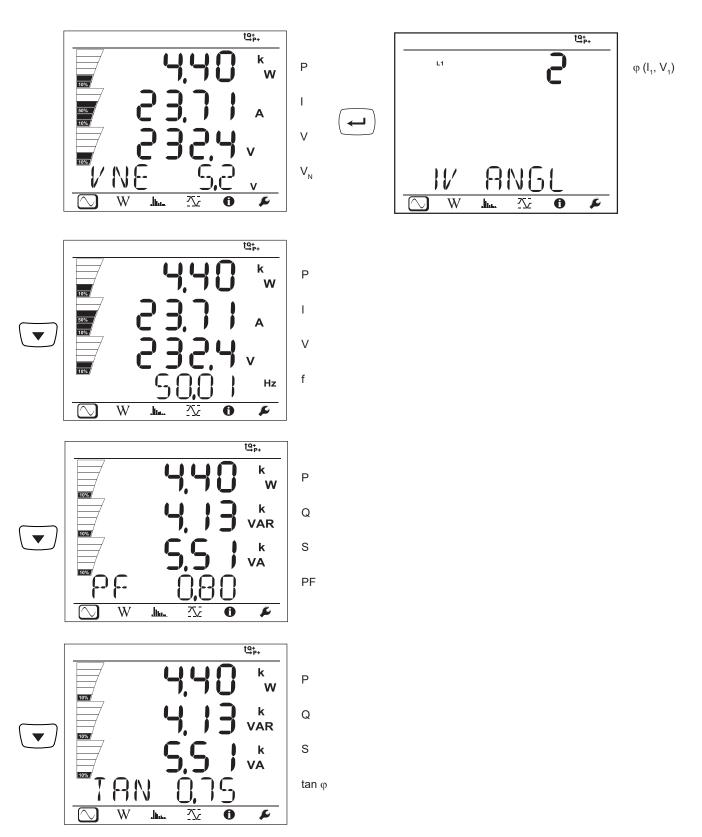
Чтобы остановить запись, необходимо выполнить такое же действие. Световой индикатор **REC** начинает мигать с частотой один раз каждые 5 секунд.

Существует возможность управлять записью посредством ПО PEL Transfer (см. § 5).

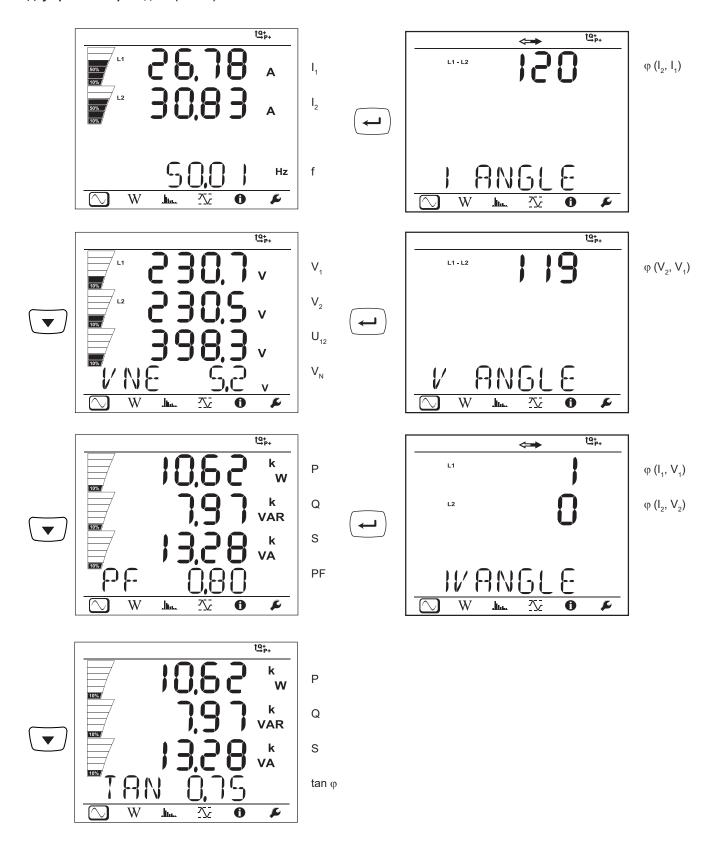
В случае отключения прибора в результате перебоя электропитания процесс измерения возобновляется при повторном включении прибора.

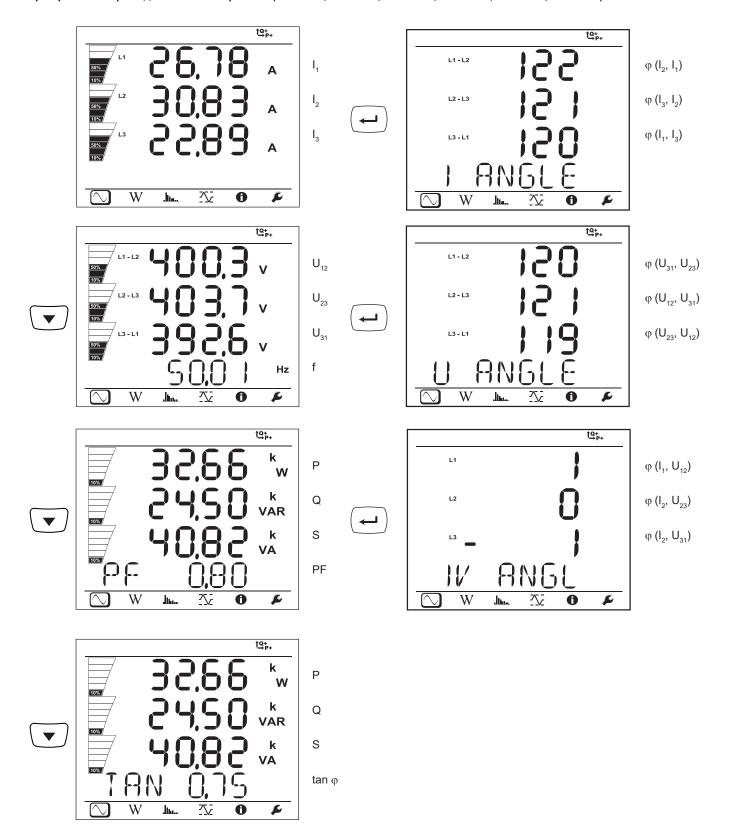
4.4. РЕЖИМЫ ИНДИКАЦИИ ИЗМЕРЕННЫХ ЗНАЧЕНИЙ

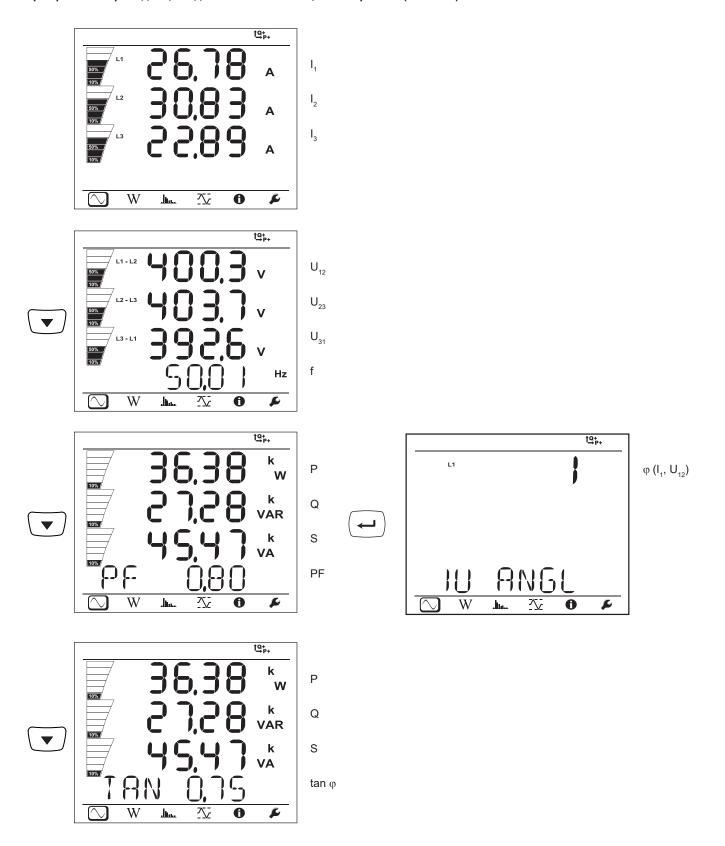
Прибор PEL предусматривает 4 режима индикации измерений, представленных соответствующими значками в нижней части дисплея. Для перехода от одного режима к другому необходимо использовать кнопку ◀ или ▶.

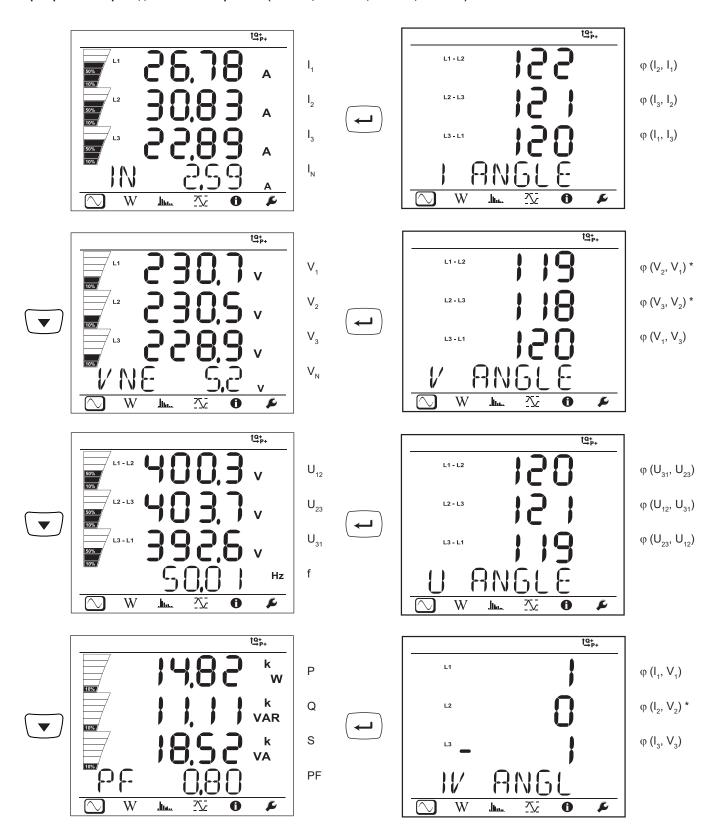

Значок	Режим индикации
	Режим индикации мгновенных значений: напряжение (V), ток (I), активная мощность (P), реактивная мощность (Q), полная мощность (S), частота (f), коэффициент мощности (PF), tan Ф.
W	Режим индикации показателей мощности и энергии: активная энергия нагрузки (Вт·ч), реактивная энергия нагрузки (вар·ч), полная энергия нагрузки (ВА·ч).
	Режим индикации гармоник по току и по напряжению.
_	Режим индикации максимальных значений: максимальные агрегированные значения измерений и энергии, зафиксированные во время последней записи.

Индикации доступны сразу по включении прибора PEL, но значения установлены на нуль. После подачи напряжения или тока на входы значения обновляются.

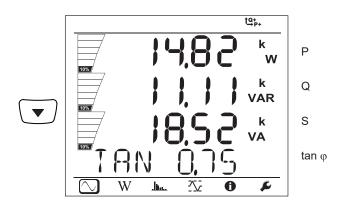

4.4.1. РЕЖИМ ИНДИКАЦИИ ИЗМЕРЕНИЙ

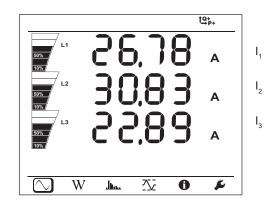

Индикация зависит от настройки сети. Нажать на кнопку ▼ для перехода к следующему экрану.

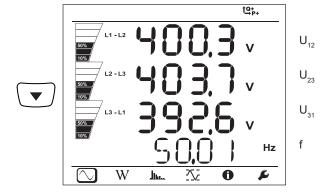

Однофазная 2-проводная (1P-2W)

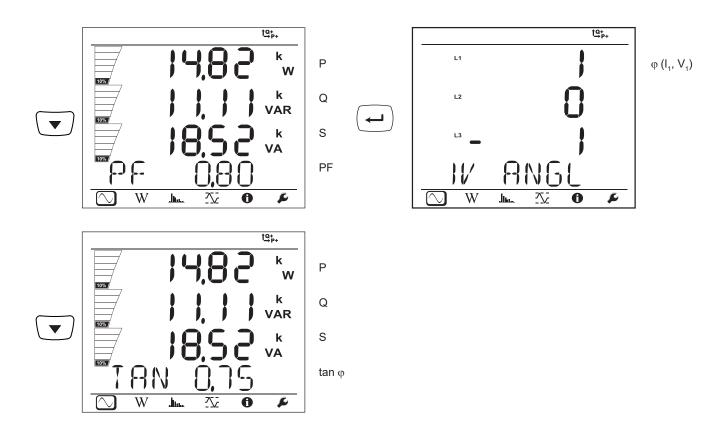


Двухфазная 3-проводная (1P-3W)

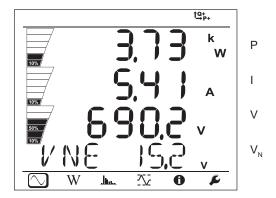


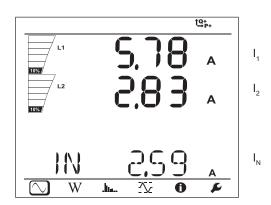


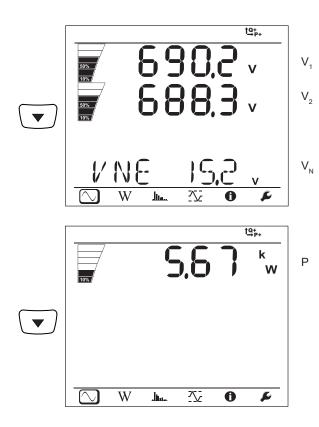

^{* :} Для сетей 3P-4W∆ и 3P-4WO



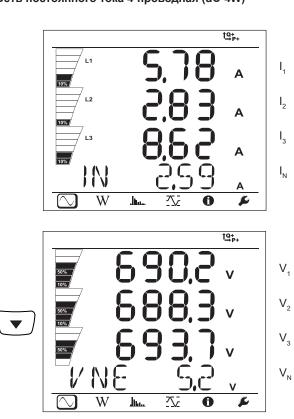
Трехфазная 4-проводная, соединенная по схеме Y, симметричная (3P-4WYb)

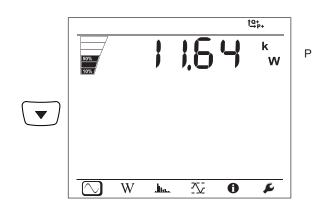




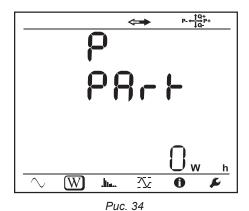


Сеть постоянного тока 2-проводная (dC-2W)




Сеть постоянного тока 3-проводная (dC-3W)

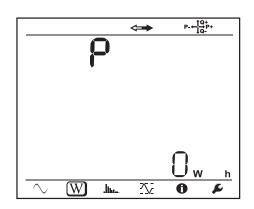
Сеть постоянного тока 4-проводная (dC-4W)



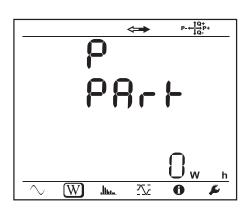
4.4.2. РЕЖИМ ИНДИКАЦИИ ПОКАЗАТЕЛЕЙ ЭНЕРГИИ W

Отображаемыми значениями мощности являются значения полной мощности. Показатель энергии зависит от длительности, обычно он доступен через 10 или 15 минут или по истечении периода агрегации.

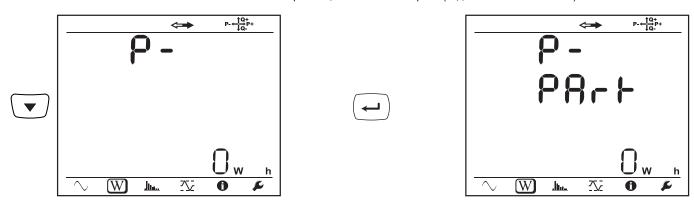
Нажать кнопку **«Ввод»** и удерживать в нажатом положении более 2 секунд для получения показателей мощности в каждом квадранте (МЭК 62053-23). Индикация на дисплее **PArt** указывает на отображение долевых значений.

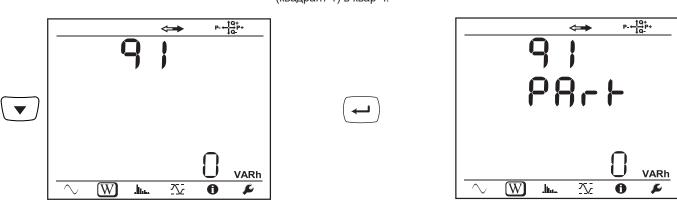


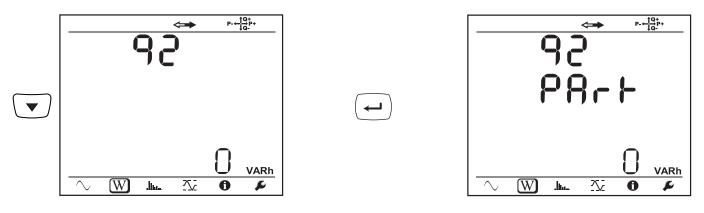
Нажать на кнопку ▼ для возврата к индикации значений полной мощности.

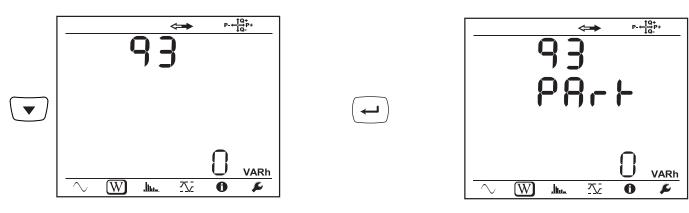

Экраны индикации отличаются в зависимости от того, является ли выбранная сеть сетью переменного или постоянного тока.

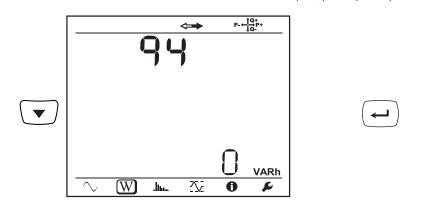
Сети переменного тока

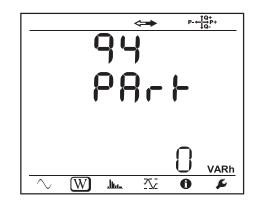

Ер+: общая активная энергия (потребляемая нагрузкой) в кВт-ч



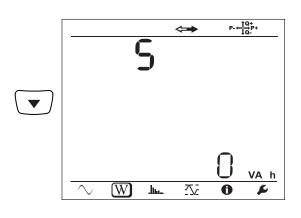

Ер-: общая активная энергия (отдаваемая источником) в кВт-ч

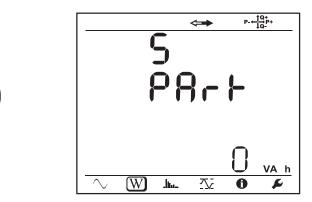

Eq1: реактивная энергия (потребляемая нагрузкой) в индуктивном квадранте (квадрант 1) в квар·ч.

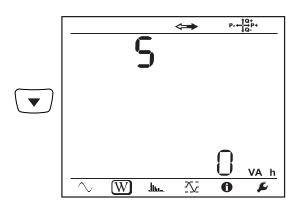

Eq2: реактивная энергия (отдаваемая источником) в емкостном квадранте (квадрант 2) в квар \cdot ч.



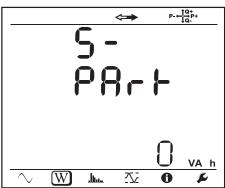
Eq3: реактивная энергия (отдаваемая источником) в индуктивном квадранте (квадрант 3) в квар·ч.



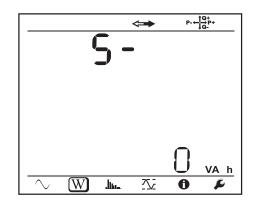

Eq4: реактивная энергия (потребляемая нагрузкой) в емкостном квадранте (квадрант 4) в квар·ч.

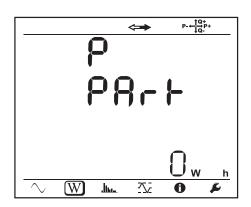


Es+: общая полная энергия (потребляемая нагрузкой) в кВА·ч

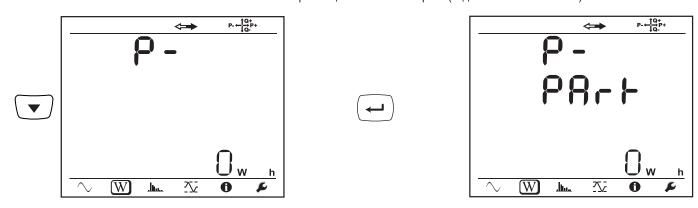


Es-: общая полная энергия (отдаваемая источником) в кВА·ч

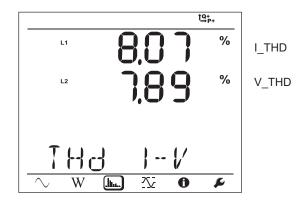




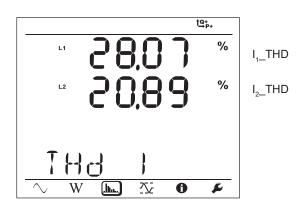
Сети постоянного тока

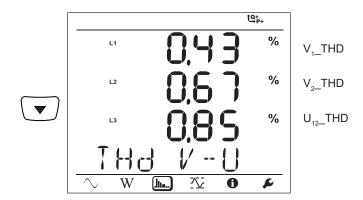

Ер+: общая активная энергия (потребляемая нагрузкой) в кВт-ч

Ер-: общая активная энергия (отдаваемая источником) в кВт-ч

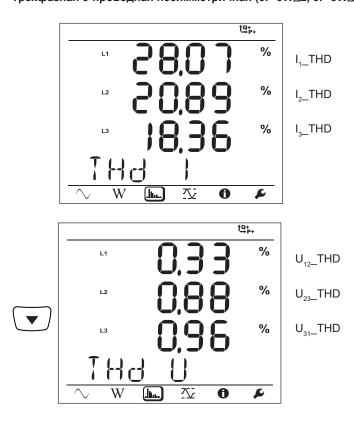


4.4.3. РЕЖИМ ИНДИКАЦИИ ГАРМОНИК

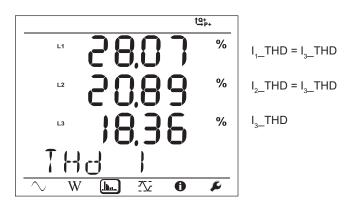

Индикация зависит от настройки сети.

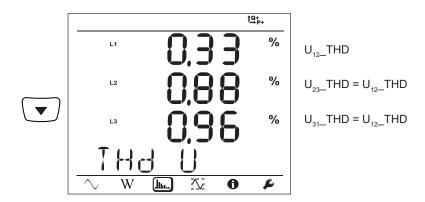

Индикация гармоник недоступна для сетей постоянного тока. На дисплее отображается индикация «No THD in DC Mode».

Однофазная 2-проводная (1P-2W)

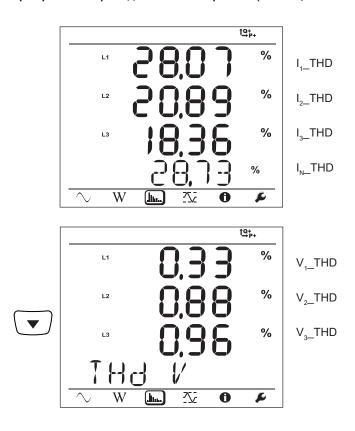


Двухфазная 3-проводная (1P-3W)

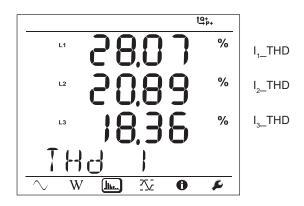




Трехфазная 3-проводная несимметричная (3P-3W∆2, 3P-3W∆3, 3P-3WO2, 3P-3WO3, 3P-3WY2, 3P-3WY3)

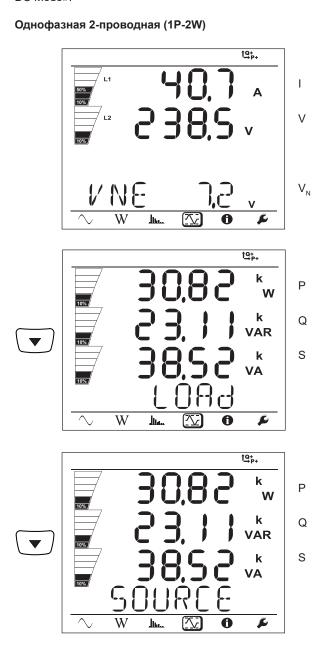


Трехфазная 3-проводная, соединенная по схеме Δ , симметричная (3P-3W Δ b)

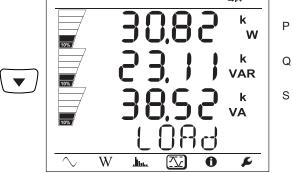


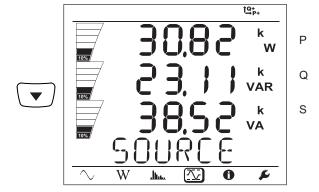
Трехфазная 4-проводная несимметричная (3P-4WY, 3P-4WY2, 3P-4WA, 3P-4WO)

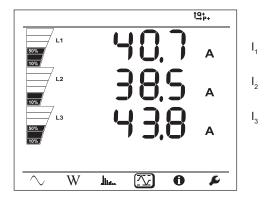
Трехфазная 4-проводная, соединенная по схеме Y, симметричная (3P-4WYb)

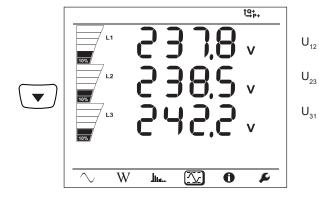


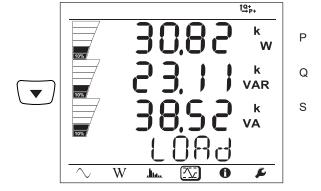

4.4.4. РЕЖИМ ИНДИКАЦИИ МАКСИМАЛЬНЫХ ЗНАЧЕНИЙ 🔽

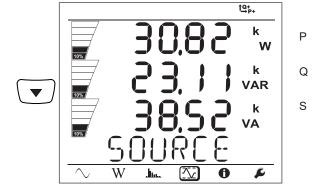

В зависимости от опции, выбранной в ПО PEL Transfer, речь может идти о максимальных агрегированных значениях текущей или последней записи или о максимальных агрегированных значениях, зарегистрированных с момента последнего сброса.

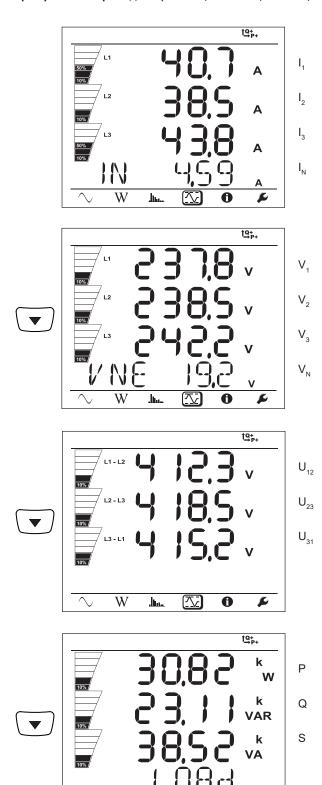

Индикация максимальных значений недоступна для сетей постоянного тока. На дисплее отображается индикация «No Max in DC Mode».

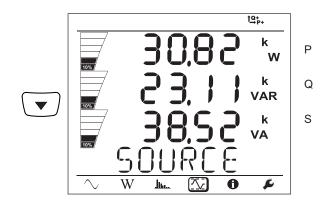



Двухфазная 3-проводная (1P-3W)









Трехфазная 4-проводная (3P-4WY, 3P-4WY2, 3P-4W∆, 3P-4WO), 3P-4WYb)

W

Для симметричной сети (3p-4WYb) значение ${\rm I_N}$ не отображается.

5. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ПРИЛОЖЕНИЕ

5.1. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ PEL TRANSFER

5.1.1. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Программное обеспечение PEL Transfer позволяет:

- Подключить прибор к ПК по сети Wi-Fi, Bluetooth, USB, Ethernet или 3G-UMTS/GPRS.
- Настроить прибор: присвоить имя, выбрать яркость и контрастность дисплея, заблокировать или разблокировать кнопку
 - «Выбор» прибора, настроить дату и время, отформатировать SD-карту и т. д.
- Настроить передачу данных между прибором и ПК.
- Настроить измерения: выбрать распределительную сеть, коэффициент трансформации, частоту, коэффициенты трансформации токовых датчиков.
- Настроить записи: выбрать имена, продолжительность, дату начала и окончания, период агрегации, регистрацию или отсутствие регистрации значений «1с» и гармоник.
- Управлять счетчиками энергии, временем работы прибора, временем наличия напряжения на измерительных входах, временем наличия тока на измерительных входах и т.д.
- Подключить регистраторы Data Logger L452 к прибору PEL106.
- Управлять тревожными сигналами прибора PEL106 при выполнении измерений или тревожными сигналами подключенных регистраторов Data Logger L452.
- Управлять отправкой регулярных отчетов по электронной почте.

Программное обеспечение PEL Transfert позволяет также открывать записи, загружать их на ПК, экспортировать в электронные таблицы, просматривать соответствующие кривые, создавать отчеты и выводить их на печать.

Данное ПО также позволяет обновлять внутреннее программное обеспечение прибора при выходе новой версии обновления.

5.1.2. YCTAHOBKA TO PEL TRANSFER

Не подсоединять прибор к ПК до установки программного обеспечения и драйверов.

Минимальные требования к компьютеру:

- Windows® 7 (32/64 бит) или Windows® 8
- Оперативная память от 2 до 4 Гб
- 10 Гб свободного места на диске
- Дисковод

Windows® — это зарегистрированная торговая марка Microsoft®.


 Загрузите последнюю версию PEL Transfer с нашего веб-сайта. www.chauvin-arnoux.com

Запустите файл setup.exe. Затем следуйте инструкциям по установке.

Вы должны обладать правами администратора для установки на своем ПК программного обеспечения PEL Transfer.

Появится предупреждающее сообщение, похожее на то, которое представлено ниже. Щелкнуть кнопкой мыши на ОК. 2.

Puc. 35

Установка драйверов может занять некоторое время. Windows может также указать, что программа не отвечает, хотя она работает. Необходимо дождаться завершения процесса.

- 3. После завершения установки драйверов открывается диалоговое окно«Успешное завершение установки». Щелкнуть кнопкой мыши на ОК.
- 4. Затем открывается окно «Работа Install Shield Wizard завершена». Щелкнуть кнопкой мыши на «Завершить».
- 5. Открывается диалоговое окно «Вопрос». Щелкнуть кнопкой мыши на «Да», чтобы прочесть информацию о процедуре подключения прибора к порту USB компьютера.

Окно браузера остается открытым. Можно выбрать другую опцию загрузки (например, Adobe® Reader), руководства по эксплуатации для чтения или же закрыть окно.

При необходимости перезагрузить компьютер.

был добавлен на рабочий стол или в каталог Dataview.

Теперь можно открыть PEL Transfer и подключить свой прибор PEL к компьютеру.

Для получения контекстной информации об установке PEL Transfer обращаться к меню «Справка по программному обеспечению»

5.2. ПРИЛОЖЕНИЕ PEL

Приложение на базе Android обладает частью функциональных возможностей ПО PEL Transfer. Оно позволяет дистанционно подключаться к прибору.

Приложение можно найти, набрав PEL Chauvin Arnoux. Установите приложение на свой смартфон или планшет

PEL Chauvin Arnoux Inc 10 k ou Téléchargem PEGI 3 ① Installer

Приложение содержит 3 вкладки.

позволяет установить соединение с прибором:

- либо по Bluetooth. Включите Bluetooth на смартфоне или планшете, найдите прибор PEL и подключитесь.
- либо через Ethernet. Подключите прибор к сети Ethernet с помощью кабеля, затем введите IP-адрес (см. § 3.6), порт и протокол сети (информация доступна в PEL Transfer). Затем подключитесь.
- либо через IRD. Введите серийный номер PEL (см. § 3.6) и пароль (информация доступна в PEL Transfer), затем подключитесь.

позволяет отобразить результаты измерений в виде векторной диаграммы.

Сдвиньте экран влево для получения значений напряжения, тока, мощности, энергии, а также информации о двигателе (скорость вращения, крутящий момент) и т. д.

позволяет:

- Настроить записи: выбрать имена, продолжительность, дату начала и окончания, период агрегации, регистрацию или отсутствие регистрации значений «1с» и гармоник.
- Настроить измерения: выбрать распределительную сеть, коэффициент трансформации, частоту, коэффициенты трансформации токовых датчиков.
- Настроить передачу данных между прибором и смартфоном или планшетом.
- Настроить прибор: настроить дату и время, отформатировать SD-карту, заблокировать или разблокировать кнопку «Выбор»

, ввести информацию о двигателе и отобразить информацию о приборе.

6. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Погрешности выражаются в % от показаний (П) плюс смещение: \pm (а% П + b)

6.1. РАСЧЕТНЫЕ УСЛОВИЯ

Параметр	Расчетные условия
Температура окружающей среды	23 ± 2 °C
Относительная влажность	от 45% до 75%
Напряжение	Отсутствие постоянной составляющей в цепи перем. тока, отсутствие переменной составляющей в цепи пост. тока (< 0,1%)
Ток	Отсутствие постоянной составляющей в цепи перем. тока, отсутствие переменной составляющей в цепи пост. тока (< 0,1%)
Частота электрической сети	50 Гц ± 0,1 Гц и 60 Гц ± 0,1 Гц
Сдвиг фаз между напряжением и током	0° (активная мощность) или 90° (реактивная мощность)
Гармоники	< 0,1%
Небаланс по напряжению	0%
Прогрев	Прибор должен быть включен под напряжение, по меньшей мере, в течение часа.
Синфазный сигнал	Прибор работает от аккумуляторной батареи, USB-кабель отсоединен.
Магнитное поле	0 Аперем. тока/м
Электрическое поле	0 Вперем. тока/м

Таблица 6

6.2. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

6.2.1. ВХОДЫ ПО НАПРЯЖЕНИЮ

Рабочий диапазон: до 1000 Вскз для напряжений между фазой и нейтралью, между фазами и между нейтралью и

«землей» при частоте от 42,5 до 69 Гц (600 Вскз при частоте от 340 до 460 Гц) и до 1000 Впост.

ТОКА.

3начения напряжения между фазой и нейтралью ниже 2 В и значения напряжения между фазами ниже 2√3 В принимаются равными нулю.

Входной импеданс: 1908 кОм (между фазой и нейтралью и между нейтралью и «землей»)

Максимальная перегрузка: 1 100 Вскз

6.2.2. ВХОДЫ ПО ТОКУ

Выходы токовых датчиков являются выходами по напряжению.

Рабочий диапазон: от 5 мкВ до 1,2 В (1В = Іном) с пик-фактором = $\sqrt{2}$

Входной импеданс: 1 МОм (за исключением токовых датчиков AmpFlex®):

12,4 МОм (токовые датчики AmpFlex® / MiniFlex®)

Максимальная перегрузка: 1,7 В

6.2.3. ОСНОВНАЯ ПОГРЕШНОСТЬ (КРОМЕ ТОКОВЫХ ДАТЧИКОВ)

Погрешности в нижеприведенных таблицах даны для значений «1 с» и агрегированных значений. Для измерений «200 мс» значения погрешностей необходимо удваивать.

6.2.3.1. ХАРАКТЕРИСТИКИ ПРИ ЧАСТОТЕ 50/60 ГЦ

Количественные показатели	Диапазон измерения	Основная погрешность
Частота (f)	[42,5; 69 Гц]	± 0,1 Гц
Напряжение между фазой и нейтралью (V)	[10 B; 1000 B]	± 0,2% Π ± 0,2 Β
Напряжение между нейтралью и «землей» (V _{РЕ})	[10 B; 1000 B]	± 0,2% Π ± 0,2 Β
Напряжение между фазами (U)	[17 B; 1700 B]	± 0.2% Π ± 0,4 Β
Ток (І)	[0,2% Іном; 120% Іном]	\pm 0,2% П \pm 0,02% Іном
Ток нейтрали (I _N)	[0,2% Іном; 120% Іном]	$\pm 0.2\% \Pi \pm 0.02\%$ IHOM
Активная мощность (Р)	PF = 1 V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,5% П ± 0,005% Рном
кВт	PF = [0,5 индукт.; 0,8 емкостн.] V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,7% П ± 0,007% Рном
	Sin φ = 1 V = [100 B; 1000 B] I = [5% Ιнοм; 120% Ιнοм]	± 1% П ± 0,01% Qном
Реактивная мощность (Q)	Sin φ = [0,5 индукт.; 0,5 емкостн.] V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 1,5% П ± 0,01% Qном
квар	Sin φ = [0,5 индукт.; 0,5 емкостн.] V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 3,5% П ± 0,03% Qном
	Sin φ = [0,25 индукт.; 0,25 емкостн.] V = [100 B; 1000 B] I = [10% Іном; 120% Іном]	± 1,5% П ± 0,015% Qном
Полная мощность (S) кВА	V = [100 B; 1000 B] I = [5% Iном; 120% Iном]	± 0,5% П ± 0,005% Sном
Koododuuuguz Mayyyaazii /DE\	PF = [0,5 индукт.; 0,5 емкостн.] V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,05
Коэффициент мощности (РF)	PF = [0,2 индукт.; 0,2 емкостн.] V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,1
ton A	tan Φ = [$\sqrt{3}$ индукт.; $\sqrt{3}$ емкостн. V = [100 B; 1000 B] I = [5% Іном ; 120% Іном	± 0,02
tan Φ	tan Ф = [3,2 индукт.; 3,2 емкостн. V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,05
Активная энергия (Ер)	PF = 1 V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,5% ∏
кВт∙ч	PF = [0,5 индукт.; 0,8 емкостн.] V = [100 B; 1000 B] I = [10% Іном; 120% Іном]	± 0,7% ∏
Реактивная энергия (Eq)	sin φ = 1 V = [100 B; 1000 B] I = [5% Ιнοм; 120% Ιнοм]	± 1,5% П
квар·ч ` ′′	sin φ = [0,5 индукт.; 0,5 емкостн.] V = [100 B; 1000 B] I = [5% Іном ; 120% Іном	± 2% Π
Полная энергия (Es) кВА·ч	V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 0,5% Π

Количественные показатели	Диапазон измерения	Основная погрешность
Коэффициент гармонических искажений (THD)	PF = 1 V = [100 B; 1000 B]	± 1% ∏
искажении (ТПВ) %	V = [100 В, 1000 В] I = [10% Іном; 120% Іном]	± 1 /0 11

Таблица 7

- Іном это значение тока, измеренное на выходе токового датчика с напряжением 1 В.
- Рном и Sном это активная и полная мощность для V = 1000 B, I = Iном и PF = 1.
- Qном это реактивная мощность для V = 1000 B, I = Iном u sin φ = 1.
- Основная погрешность на уровне входов по току задается для изолированного входа с напряжением 1 В, что соответствует Іном. Необходимо прибавить к ней основную погрешность используемого токового датчика, чтобы узнать общую погрешность измерительной цепи. Для токовых датчиков AmpFlex® и MiniFlex® необходимо применять основную погрешность, указанную в табл. Таблица 21.
- Если токовые датчики не используются, то основная погрешность по току нейтрали соответствует сумме погрешностей по 11, 12 и 13

6.2.3.2. ХАРАКТЕРИСТИКИ ПРИ ЧАСТОТЕ 400 ГЦ

Количественные показатели	Диапазон измерения	Основная погрешность
Частота (f)	[340 Гц; 460 Гц]	± 0,3 Гц
Напряжение между фазой и нейтралью (V)	[10 B; 600 B]	± 0,2% Π ± 0,5 Β
Напряжение между нейтралью и «землей» (V _{PF})	[4 B; 600 B]	± 0,2% Π ± 0,5 B
Напряжение между фазами (U)	[17 B; 600 B]	± 0,2% Π ± 1 B
Ток (І)	[0,2% Іном; 120% Іном]	± 0,5% П ± 0,05% Іном
Ток нейтрали (I _N)	[0,2% Іном; 120% Іном]	± 0,5% П ± 0,05% Іном
Активная мощность (Р)	PF = 1 V = [100 B; 600 B] I = [5% Iном; 120% Іном]	±2% П ± 0,02% Рном ¹
кВт	PF = [0,5 индукт.; 0,8 емкостн.] V = [100 B; 600 B] I = [5% Іном; 120% Іном]	±3% П ± 0,03% Рном ¹
Активная энергия (Ер) кВт·ч	PF = 1 V = [100 B; 600 B] I = [5% Iном; 120% Іном]	± 2% Π

Таблица 8

- Іном это значение тока, измеренное на выходе токового датчика с напряжением 1 В.
- Рном это активная мощность для V = 600 B, I = Iном и PF = 1.
- Основная погрешность на уровне входов по току (I) задается для изолированного входа с номинальным напряжением 1 В, что соответствует Іном. Необходимо прибавить к ней основную погрешность используемого токового датчика, чтобы узнать общую погрешность измерительной цепи. Для токовых датчиков AmpFlex® и MiniFlex® необходимо применять основную погрешность, указанную в табл. Таблица 21.
- Если токовые датчики не используются, то основная погрешность по току нейтрали соответствует сумме погрешностей по 11, 12 и 13
- Что касается токовых датчиков AmpFlex® и MiniFlex®, максимальный ток ограничен 60% Іном при 50/60 Гц.
- 1: приблизительное значение

6.2.3.3. ХАРАКТЕРИСТИКИ ДЛЯ СЕТЕЙ ПОСТОЯННОГО ТОКА

Количественные показатели	Диапазон измерения	Типовая основная погрешность
Напряжение (V)	V = [100 B; 1000 B]	± 0,2% Π ± 0,2 Β
Напряжение между нейтралью и «землей» (V _{PE})	V = [2 B; 1000 B]	± 0,2% Π ± 0,2 Β
Ток (I)	I = [5% Іном; 120% Іном]	± 0,2% П ± 0,02% Іном
Ток нейтрали (I _N)	I = [5% Іном; 120% Іном]	± 0,2% П ± 0,02% Іном
Мощность (Р) кВт	V = [100 B; 1000 B] I = [5% Iном; 120% Іном]	± 0,5% П ± 0,005% Рном
Энергия (Ер) кВт·ч	V = [100 B; 1000 B] I = [5% Іном; 120% Іном]	± 1% Π

Таблица 9

- Іном это значение тока, измеренное на выходе токового датчика с напряжением 1 В.
- Рном это мощность для V = 600 B, I = Iном.
- Основная погрешность на уровне входов по току (I) задается для изолированного входа с номинальным напряжением 1 В, что соответствует Іном. Необходимо прибавить к ней основную погрешность используемого токового датчика, чтобы узнать общую погрешность измерительной цепи.
- Если токовые датчики не используются, то основная погрешность по току нейтрали соответствует сумме погрешностей по 11, 12 и 13

6.2.3.4. ТЕМПЕРАТУРА

Для V, U, I, P, Q, S, PF и E:

- 300 ppm/°C, при 5% < I < 120% и PF = 1
- 500 ppm/°C, при 10% < I < 120% и PF = 0,5 индукт.

Смещение в сети пост. тока

- V: 10 мВ/°С (типовое значение)
- I: 30 ppm x Iном /°С (типовое значение)

6.2.3.5. ПОДАВЛЕНИЕ СИНФАЗНОГО СИГНАЛА

Коэффициент подавления синфазного сигнала на нейтрали составляет 140 дБ (типовое значение).

Например, напряжение 230 В, приложенное к нейтрали, добавит 23 мкВ на выходах токовых датчиков AmpFlex® и Min*i*Flex®, что составляет ошибку в 230 мА при 50 Гц. На остальных токовых датчиках, это составит дополнительную ошибку, соответствующую 0,01% Іном.

6.2.3.6. ВОЗДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ

Для входов по току, к которым подключены гибкие токовые датчики MiniFlex® или AmpFlex®: 10 мA/A/м (типовое значение) при 50/60 Гц.

6.2.4. ТОКОВЫЕ ДАТЧИКИ

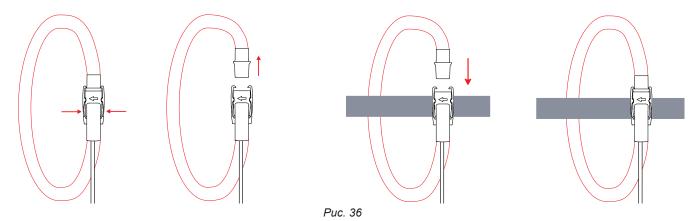
6.2.4.1. МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ ИСПОЛЬЗОВАНИИ

Обращаться к листу данных по безопасности или руководству по эксплуатации, входящим в комплект поставки токовых датчиков.

Амперометрические клещи и гибкие токовые датчики служат для измерения тока, протекающего по кабелю, без размыкания цепи. Они также защищают пользователя от опасных напряжений, присутствующих в цепи.

Выбор токового датчика зависит от измеряемого тока и диаметра кабелей.

При установке датчика, следовать направлению стрелки на датчике, обращенной в сторону нагрузки.


Только токовые датчики AmpFlex® A196A, токовые датчики MiniFlex® MA196 и провода с блокировкой для измерения напряжения обеспечивают герметичность (IP67, когда прибор закрыт).

6.2.4.2. ХАРАКТЕРИСТИКИ

Диапазоны измерений соответствуют рабочим диапазонам токовых датчиков. Иногда они отличаются от диапазонов прибора PEL. Для получения более подробной информации необходимо обращаться к руководству по эксплуатации, входящему в комплект поставки датчика.

а) AmpFlex® A196A или AmpFlex® A193

■ Нажать с двух сторон на запирающий механизм, чтобы разомкнуть гибкое кольцо. Разомкнуть его, затем поместить вокруг проводника, по которому протекает измеряемый ток (по одному проводнику на кольцо).

- Снова замкнуть кольцо. Должен прозвучать «щелчок». Для достижения высокой точности измерения необходимо разместить проводник по центру кольца, а кольцу по возможности придать максимально круглую форму.
- Чтобы отсоединить токовый датчик, необходимо его разомкнуть и снять с проводника. Затем отсоединить токовый датчик от прибора.

AmpFlex® A196A (герметичные, степень защиты IP 67) и AmpFlex® A193		
Номинальный диапазон	100 / 400 / 2000 / 10 000 АПЕРЕМ. ТОКА	
Диапазон измерения	от 0,2 до 12 000 Аперем. тока	
Максимальный диаметр захвата (в зависимости от модели)	А196А: Длина = 610 мм; Ø = 170 мм А193: Длина = 450 мм; Ø = 120 мм А193: Длина = 800 мм; Ø = 235 мм	
Влияние положения проводника в отверстии кольца датчика	≤ 2% повсюду и ≤ 4% возле запирающего механизма	
Влияние близлежащего проводника, по которому протекает переменный ток	> 40 дБ повсюду и > 33 дБ возле запирающего механизма	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 1000 В КАТ. IV	

Таблица 10

Замечание: Токи < 0,05% от номинального диапазона принимаются равными нулю.

Номинальные диапазоны снижены до 50 / 200 / 1000 / 5 000 Аперем. тока при частоте 400 Гц.

b) MiniFlex® MA193, MA194 или MA196

MiniFlex [®] MA193 или MA196		
Номинальный диапазон	100 / 400 / 2000 АПЕРЕМ. ТОКА	
Диапазон измерения	от 200 мА до 2400 АПЕРЕМ. ТОКА	
Максимальный диаметр захвата	Длина = 250 мм; Ø = 70 мм (только МА 193) Длина = 350 мм; Ø = 100 мм	П
Влияние положения проводника в отверстии кольца датчика	≤ 1,5% (типовое значение), 2,5% максимум	
Влияние близлежащего проводника, по которому протекает переменный ток	> 40 дБ > 40 дБ (типовое значение) при 50/60 Гц для проводника, соприкасающегося с датчиком, и > 33 дБ возле запирающего механизма	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 600 В КАТ. IV, 1000 В КАТ. III	

Таблица 11

Замечание: Токи < 0,05 % от номинального диапазона принимаются равными нулю. Номинальные диапазоны снижены до 50 / 200 / 1000 / 5 000 Аперем. тока при частоте 400 Гц.

MiniFlex® MA194		
Номинальный диапазон	100 / 400 / 2 000 / 10 000 АПЕРЕМ. ТОКА (ДЛЯ МОДЕЛИ 1000 ММ)	
Диапазон измерения	от 50 мА до 2400 Аперем. тока	
Максимальный диаметр захвата	Длина = 250 мм; Ø = 70 мм Длина = 350 мм; Ø = 100 мм Длина = 1 000 мм, Ø = 320 мм	Д
Влияние положения проводника в отверстии кольца датчика	≤ 2,5 %	
Влияние близлежащего проводника, по которому протекает переменный ток	> 40 дБ > 40 дБ (типовое значение) при 50/60 Гц для проводника, соприкасающегося с датчиком, и > 33 дБ возле запирающего механизма	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 600 В КАТ. IV, 1000 В КАТ. III	

Таблица 12

Замечание: Токи < 0,05 % от номинального диапазона принимаются равными нулю. Номинальные диапазоны снижены до 50 / 200 / 1000 / 5000 АПЕРЕМ. Тока при частоте $400 \, \Gamma$ ц.

Диапазон 10 000 A действует при условии полного захвата проводника кольцом датчика MiniFlex®.

с) Клещи РАС93

Замечание: вычисления мощности сбрасываются при настройке нулевого значения тока.

Клещи РАС93		
Номинальный диапазон	1000 Аперем. тока, 1300 Апост. тока	
Диапазон измерения	от 1 до 1000 Аперем. тока, от 1 до 1300 Апик перем. ток+пост. ток	(-()-)
Максимальный диаметр захвата	Один проводник 42 мм или два по 25,4 мм, или две шины 50 x 5 мм	
Влияние положения проводника в отверстии губок клещей	< 0,5%, сеть пост. тока при частоте 440 Гц	
Влияние близлежащего проводни- ка, по которому протекает пере- менный ток	> 40 дБ > 40 дБ (типовое значение) при 50/60 Гц	0
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 300 В КАТ. IV, 600 В КАТ. III	it I

Таблица 13

Замечание: Токи < 1 Аперем./пост. тока в сетях переменного тока принимаются равными нулю.

d) Клещи С193

Клещи С193		
Номинальный диапазон	1000 АПЕРЕМ. ТОКА ДЛЯ f ≤ 10 кГц	
Диапазон измерения	от 1 А до 1200 Аперем. тока макс. (I >1000 А максимум в течение 5 минут)	
Максимальный диаметр захвата	52 мм	
Влияние положения проводника в отверстии губок клещей	< 0,5%, сеть пост. тока при частоте 440 Гц	C193
Влияние близлежащего проводника, по которому протекает переменный ток	> 40 дБ (типовое значение) при 50/60 Гц	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 600 В КАТ. IV, 1000 В КАТ. III	

Таблица 14

Замечание: Токи < 0,5 А принимаются равными нулю.

е) Клещи МN93

Клещи MN93		
Номинальный диапазон	200 АПЕРЕМ. ТОКА ДЛЯ f ≤ 10 кГц	
Диапазон измерения	от 0,5 до 240 Аперем. тока макс. (I >200 А перем. тока)	
Максимальный диаметр захвата	20 мм	
Влияние положения проводника в отверстии губок клещей	< 0,5% при 50/60 Гц	
Влияние близлежащего проводника, по которому протекает переменный ток	> 35 дБ (типовое значение) при 50/60 Гц	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 300 В КАТ. IV, 600 В КАТ. III	

Таблица 15

Замечание: Токи < 100 мА принимаются равными нулю.

f) Клещи MN93A

Клещи MN93A		
Номинальный диапазон	5 А и 100 Аперем. тока	П
Диапазон измерения	Диапазон 5 А: от 0,005 до 6 Аперем. тока макс. Диапазон 100 А: от 0.2 до 120 Аперем. тока макс.	
Максимальный диаметр захвата	20 мм	•
Влияние положения проводника в отверстии губок клещей	< 0,5% при 50/60 Гц	
Влияние близлежащего проводника, по которому протекает переменный ток	> 35 дБ (типовое значение) при 50/60 Гц	
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 300 В КАТ. IV, 600 В КАТ. III	

Таблица 16

Диапазон 5 А клещей MN93A предназначен для измерения токов вторичной обмотки токовых трансформаторов.

Замечание: Токи < 2,5 мA × коэффициент трансформации в диапазоне 5 A и < 50 мA в диапазоне 100 A принимаются равными нулю.

g) Клещи E3N с адаптером

Клещи E3N					
Номинальный диапазон	10 АПЕРЕМ./ПОСТ. ТОКА, 100 АПЕРЕМ./ПОСТ. ТОКА	D			
Диапазон измерения	Диапазон 100 мВ/А: от 0,05 до 10 Аперем./пост. тока Диапазон 10 мВ/А: от 0,5 до 100 Аперем./пост. тока				
Максимальный диаметр захвата	11,8 мм	H H			
Влияние положения проводника в отверстии губок клещей	< 0,5%				
Влияние близлежащего проводика, по которому протекает переменный ток	> 33 дБ (типовое значение), сеть пост. тока при частоте 1 кГц				
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 300 В КАТ. IV, 600 В КАТ. III				

Таблица 17

Замечание: Токи < 50 мА в сетях переменного тока принимаются равными нулю.

h) Клещи J93

Клещи Ј93					
Номинальный диапазон	3500 АПЕРЕМ. ТОКА, 5000 АПОСТ. ТОКА				
Диапазон измерения	50–3500 Аперем. тока; 50–5000 Апост. тока				
Максимальный диаметр захвата	72 мм	$\begin{pmatrix} \circ & / \circ \end{pmatrix}_{\mathbb{R}^2}$			
Влияние положения проводника в отверстии губок клещей	< ± 2%	\\H/\\			
Влияние близлежащего проводника, по которому протекает переменный ток	> 35 дБ (типовое значение), сеть пост. тока при частоте 2 кГц				
Безопасность	МЭК 61010-2-032, степень загрязнения 2, 600 В КАТ. IV, 1000 В КАТ. III				

Таблица 18

Замечание: Токи < 5 А в сетях переменного тока принимаются равными нулю.

h) Адаптерный блок 5 A/Essailec®

Адаптерный блок 5 A/Essailec®					
Номинальный диапазон	5 Аперем. тока				
Диапазон измерения	от 0,005 до 6 Аперем. тока	TOLANO CY TOMBROOD MEET.			
Число входов для трансформатора	3				
Безопасность	МЭК 61010-2-030, степень загрязнения 2, 300 В КАТ. III				

Таблица 19

Замечание: Токи < 2,5 мА принимаются равными нулю.

i

Основные погрешности измерений тока и фазы необходимо прибавлять к основным погрешностям прибора для получения соответствующей величины: мощности, энергии, коэффициентов мощности, $\tan \Phi$ и т.д.

Нижеследующие характеристики приведены в порядке расчетных условий для токовых датчиков.

Характеристики токовых датчиков (выход 1 В при Іном)

Токовый датчик	I номиналь- ный	Ток (СКЗ или пост. ток)	Основная погрешность при 50/60 Гц	Основная погрешность по ф при 50/60 Гц	Типовая погреш- ность по φ при 50/60 Гц	Типовая по- грешность по ф при 400 Гц
		[1 A; 50 A[± 1,5% Π ± 1 A	-	-	
	1000 Аперем.	[50 A; 100 A[± 1,5% Π ± 1 A	± 2,5°	-0,9°	
Клещи РАС193	тока 1300 Апост.	[100 A; 800 A[± 2,5% Π		- 0,8°	
FAC 193	TOKA	[800 A; 1000 A[± 4% Π	± 2°	- 0,65°	- 4,5°при 100 А
]1000 Апост. тока; 1300 Апост. тока[± 4% Π		- 0,65°	
		[1 A; 50 A[± 1% ∏	-	-	
Клещи С193	1000 АПЕРЕМ. ТОКА	[50 A; 100 A[± 0,5% Π	± 1°	+ 0,25°	. 0.1°==:1000 A
		[100 A; 1200 A[± 0,3% Π	± 0,7°	+ 0,2°	+ 0,1°при 1000 А
		[0,5 A; 5 A[± 3% Π ± 1 A	-	-	-
Клещи	200 Аперем.	[5 A; 40 A[± 2,5% Π ± 1 A	± 5°	+ 2°	- 1,5° при 40 А
MN93	ТОКА	[40 A; 100 A[± 2% Π ± 1 A	± 3°	+ 1,2°	- 0,8° при 100 А
		[100 A; 240 A[± 1% Π + 1 A	± 2,5°	± 0,8°	- 1° при 200 А
	100 Аперем.	[200 мА; 5 А[± 1% П ± 2 мА	± 4°	-	-
Клещи	ТОКА	[5 A; 120 A[± 1% Π	± 2,5°	+ 0,75°	- 0,5° при 100 А
MN93A		[5 мА; 250 мА[± 1,5% П ± 0,1 мА	-	-	-
		[250 мА; 6 А[± 1% ∏	± 5°	+ 1,7°	- 0,5° при 5 А
	100 Аперем./	[50 мА; 40 А[± 4% П ± 50 мА	± 1°	-	-
Клещи ЕЗN	ПОСТ. ТОКА	[40 A; 100 A[± 15% Π	± 1°	-	-
LON	10 АПЕРЕМ./ ПОСТ. ТОКА	[50 мА; 10 А[± 3% П ± 50 мА	± 1,5°	-	-
		[50 A; 250 A[± 2% Π ± 2,5 A	± 3°	-	-
Клещи	3500 АПЕРЕМ. ТОКА	[250 A; 500 A[± 1,5% Π ± 2,5 A	± 2°	-	-
J93	5000 Апост.	[500 A; 3500 A[± 1% Π	± 1,5°	-	-
	ТОКА]3500 Апост. тока; 5000 Апост. тока[± 1% Π	-	-	-
Адаптер	5 Аперем.	[5 мА; 250 мА[± 0,5% П ± 2 мА	± 0,5°		
5A/Essailec®	ТОКА	[250 мА; 6 А[± 0,5% П ± 1 мА	± 0,5°]	-

Таблица 20

Характеристики AmpFlex® и Min/Flex®

Токовый датчик	I номиналь- ный	Ток (СКЗ или пост. ток)	Основная погрешность при 50/60 Гц	Основная погрешность при 400 Гц	Основная погрешность по ф при 50/60 Гц	Типовая по- грешность по ф при 400 Гц
	100 Аперем.	[200 мА; 5 А[± 1,2% П ± 50 мА	± 2% Π ± 0,1 A	-	-
	ТОКА	[5 A; 120 A[*	£ 1,2%11£30 MA	± 2 /0 ± 0, A	± 0,5°	- 0,5°
	400 Аперем.	[0,8 A; 20 A[+ 4 20/ E + 0 2 A	+ 20/ E + O 4 A	-	-
AmpFlex®	ТОКА	[20 A; 500 A[*	± 1,2% Π ± 0,2 A	± 2% Π ± 0,4 A	± 0,5°	- 0,5°
A196A A193	2000 Аперем.	[4 A; 100 A[1 4 20/ E 1 4 A	1 20/ E 1 2 A	-	-
	ТОКА	[100 A; 2 400 A[*	± 1,2% Π±1 A	± 2% Π ± 2 A	± 0,5°	- 0,5°
	10 000 Аперем. тока	[20 A; 500 A[± 1,2% Π ± 5 A	±2% Π ± 10 A	-	-
		[500 A; 12 000 A[*			± 0,5°	- 0,5°
	100 Аперем.	[200 мА; 5 А[± 1% П ± 50 мА	± 2% Π ± 0,1 A	-	-
	ТОКА	[5 A; 120 A[*	± 1%11± 50 MA		± 0,5°	- 0,5°
MiniFlex®	400 Аперем.	[0,8 A; 20 A[± 1% П ± 0,2 A ± 2% П ± 0,4 A	1 20% E 1 0 4 A	-	-
MA193	ТОКА	[20 A; 500 A[*		± 2% II ± 0,4 A	± 0,5°	- 0,5°
MA196	2000 Аперем.	[4 A; 100 A[. 40/ 🗖 . 4.4	. 00/ 🗖 . 0 A	-	-
MA194	ТОКА	[100 A; 2 400 A[*	± 1% Π ± 1 A	± 2% Π ± 2 A	± 0,5°	- 0,5°
	10 000 Аперем.	[20 A; 500 A[± 1% Π ± 1 A	. 00/ 日 . 0 4	-	-
	TOKA ¹	[500 A; 12 000 A[*	I I/OIIIIA	± 2% Π ± 2 A	± 0,5°	- 0,5°

Таблица 21

^{1:} При условии полного захвата проводника.

Номинальные диапазоны снижены вдвое при частоте 400 Гц (*).

Ограничение по использованию датчиков AmpFlex® и MiniFlex®

Как и во всех датчиках на основе пояса Роговского выходное напряжение датчиков AmpFlex® и MiniFlex® пропорционально частоте. Сильный ток высокой частоты может насыщать токовый вход приборов.

Во избежание насыщения необходимо соблюдать следующее условие:

$$\sum_{n=1}^{n=\infty} [n. I_n] < I_{nom}$$

Где

 $\mathsf{I}_{\mathsf{nom}}$ диапазон токового датчика

n порядок гармоники.

Например, диапазон входного тока плавного регулятора должен быть в 5 раз ниже выбранного диапазона тока прибора.

Данное требование не учитывает ограничение полосы пропускания прибора, что может привести к другим ошибкам.

6.3. ПЕРЕДАЧА ДАННЫХ

6.3.1. BLUETOOTH

Bluetooth 2.1

Класс 1 (радиус действия на открытом пространстве до 100 м)

Код сопряжения по умолчанию: 000 Номинальная выходная мощность: +15 дБм Номинальная чувствительность: -82 дБм

Скорость передачи: 115,2 кбит/с

6.3.2. USB

Разъем типа В USB 2

6.3.3. СЕТЬ

Разъем RJ-45 с 2 встроенными СИДами Ethernet 100 Base T

6.3.4. WI-FI

Диапазон частот 2,4 ГГц согласно стандарту IEEE 802.11 B/G/N передачи данных по радиоканалу ТХ мощность: +17 дБм RX чувствительность: -97 дБм Скорость передачи данных: 72,2 Мб/с макс. Безопасность: WPA / WPA2 Точка доступа (AP): до 5 клиентов

6.3.5. 3G-UMTS/GPRS

Для Европы, США и Китая

UMTS/HSPA 800/850/900/1700/1900/2100 МГц
(Полосы VI, V, VIII, IV, II, I)
3GPP, версия 7

GSM GSM 850 / 900 / 1800 / 1900 МГц
3GPP, версия 7
поддержка РВССН

GPRS, класс 12, CS1-CS4 — до 86,5 кбайт/с
EDGE, класс 12, MCS1-9 — до 236,8 кбайт/с

6.4. ИСТОЧНИК ПИТАНИЯ

Сетевой источник питания

■ **Рабочий диапазон:** от 100 В до 1000 В при частоте от 42,5 до 69 Гц

от 100 В до 600 В при частоте от 340 до 460 Гц от 140 В до 1000 В для сетей постоянного тока

■ Максимальная мощность: 30 B·A

Специальный внешний сетевой блок питания PA30W (опция)

■ относящемся к категории IV 600 В категории III 1000 В.

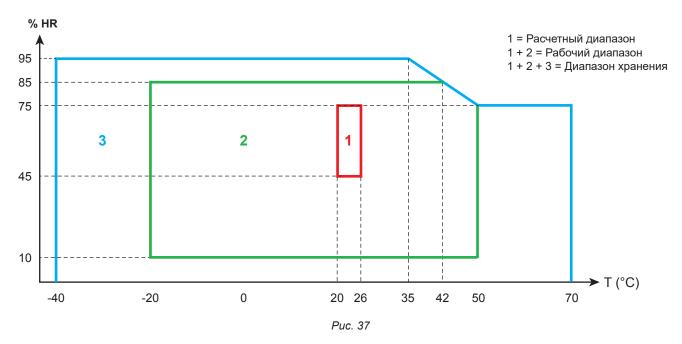
■ Рабочий диапазон: 90–264 В перем. тока при 50/60 Гц

■ Максимальная входная мощность: 65 B·A

Выходное напряжение: 15 В пост. тока

Аккумуляторная батарея

- Тип: аккумуляторная батарея NiMH
- Число циклов зарядки/разрядки: > 1000
- Время зарядки: около 5 ч
- Температура перезарядки: от -20 до +55 °C
- Длительность автономной работы: около 1 ч без активации Bluetooth или Wi-Fi



Когда прибор отключен от питания, работа часов сохраняется в течение 20 дней.

6.5. УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

- Прибор может эксплуатироваться как внутри помещений, так и снаружи.
- Высота над уровнем моря:
 - Рабочая: от 0 до 2000 м
 - Хранения: от 0 до 10 000 м

Температура и относительная влажность:

6.6. МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Размеры: 270 мм (+ 50 мм с подключенными проводами) × 245 мм × 180 мм
- Масса: около 3,4 кг
- **Испытание на прочность при падении:** с высоты 20 см в самом неблагоприятном положении без каких-либо функциональных или неустранимых механических повреждений. С высоты 1 м в упаковке.
- Степень защиты согласно стандарту МЭК 60529
 - IP 67, когда крышка прибора закрыта и надежно подсоединены провода для измерения напряжения и провода датчиков AmpFlex® A196A.
 - IP 67, когда крышка прибора закрыта и на клеммы установлены заглушки.
 - IP 54, когда крышка открыта, прибор находится в горизонтальном положении и на клеммы установлены заглушки.
 - IP 40, когда крышка открыта, прибор находится в горизонтальном положении и с клемм сняты заглушки.

6.7. ЭЛЕКТРОБЕЗОПАСНОСТЬ

Приборы отвечают требованиям стандартов MЭК/EN 61010-2-030 или BS EN 61010-2-030:

- Измерительные входы и оболочка: 1000 В категория перенапряжения IV, степень загрязнения 3 (4, если прибор закрыт)
- Электропитание: 1000 В категория перенапряжения IV, степень загрязнения 2

Токовые датчики отвечают требованиям стандарта MЭК/EN 61010-2-032 или BS EN 61010-2-032 (см. § 6.2.4).

Измерительные провода и зажимы типа «крокодил» отвечают требованиям стандарта МЭК/EN 61010-031 или BS EN 61010-031.

6.8. ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ

Излучение и безопасность для окружающей среды согласно стандарту MЭК/EN 61326-1 или BS EN 61362-1.

При использовании датчиков AmpFlex® и MiniFlex® вносимая погрешность составляет 0,5% полной шкалы при максимальном значении 5 A.

6.9. РАДИОИЗЛУЧЕНИЕ

Приборы соответствуют директиве RED 2014/53/UE и правилам FCC. https://www.chauvin-arnoux.com/COM/CA/doc/Declaration of conformity PEL106.pdf

	Сертификация FCC	
Bluetooth	FCC QOQWT11u	
Wi-Fi	FCC QOQWF121	
3G	FCC XPY-LISAU200	

6.10. КАРТА-ПАМЯТИ

Прибор PEL поддерживает SD-, SDHC- и SDXC-карты, отформатированные в FAT32, емкостью до 32 Гб. Карты SDXC должны форматироваться в приборе.

Число установок и извлечений: 1000.

Передача большого объема данных может быть долгой. Более того, некоторые компьютеры могут с трудом обрабатывать такое количество информации, а электронные таблицы вмещают ограниченный объем данных.

Мы рекомендуем оптимизировать данные, хранящиеся на SD-карте, и записывать только необходимые измерения. Для справки: запись в течение 5 дней с периодом агрегации 15 минут, регистрацией данных «1 с» и гармоник в трехфазной четырехпроводной сети занимает около 530 Мб. Если в показателях гармоник нет необходимости и их запись отключена, то размер данных сокращается примерно до 67 Мб.

Максимальная длительность записей для карты емкостью 2 Гб следующая:

- 19 дней для записи с периодом агрегации 1 минута с регистрацией данных «1 с» и гармоник;
- 12 недель для записи с периодом агрегации 1 минута с регистрацией данных «1 с», но без гармоник;
- 2 года для записи с периодом агрегации, составляющим 1 минуту.

Не сохранять на SD-карте более 32 записей.

Для длительных записей (продолжительностью более одной недели) или записей, содержащих показатели гармоник, необходимо использовать SDHC-карты класса 4 или выше.

Не использовать соединение по Bluetooth для загрузки большого объема записей, поскольку это займет слишком много времени. Если по Bluetooth необходимо передать только одну запись, то следует сократить ее размер за счет извлечения данных «1 с» и гармоник. Без них запись длительностью 30 дней не занимает более 2,5 Мб.

Зато может быть приемлемой загрузка через USB или Ethernet в зависимости от длительности записи и скорости передачи данных. Для передачи данных с большей скоростью использовать адаптер для карт памяти SD/USB.

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

За исключением уплотнителей герметичных разъемов и заглушек для клемм, прибор не содержит деталей, замену которых может производить необученный и неуполномоченный персонал. Любое несанкционированное выполнение работ по техническому обслуживанию, а также замена деталей аналогичными запчастями может серьезно сказаться на безопасности.

Регулярно проверять состояние уплотнительных колец на проводах. В случае повреждения уплотнителей герметичность не обеспечивается.

7.1. ЧИСТКА

Отсоединить от прибора все подключения.

Использовать мягкую ветошь, слегка смоченную в мыльной воде. Протереть прибор влажной ветошью, а затем быстро вытереть насухо сухой ветошью или обдать струей воздуха. Не использовать спирт, растворители или углеводород.

Не использовать прибор, если на клеммы или кнопочную панель попала влага. Сперва высушить его.

Что качается токовых датчиков:

- Следить за тем, чтобы никакие сторонние предметы не препятствовали надлежащему функционированию запирающего механизма токового датчика.
- Содержать воздушные зазоры клещей в безупречно чистом состоянии. Не допускать попадания брызг воды непосредственно на клещи.

7.2. АККУМУЛЯТОРНАЯ БАТАРЕЯ

Прибор оснащен аккумуляторной батареей NiMH. Данная технология обладает многими преимуществами:

- Длительный период автономной работы при небольших габаритах и массе;
- Значительно меньший эффект памяти: можно перезаряжать аккумулятор, даже если он не полностью разряжен;
- Бережное отношение к окружающей среде: отсутствие загрязняющих веществ, таких как свинец или кадмий, в соответствии с действующими нормативными актами.

После длительного хранения аккумуляторная батарея может полностью разрядиться. В этом случае зарядка может занять несколько часов. Тогда потребуется, по меньшей мере, 5 циклов зарядки/разрядки, чтобы аккумуляторная батарея снова достигла 95% своей емкости.

Для оптимизации использования аккумуляторной батареи и продления ее срока службы:

- Производить зарядку только при температуре в диапазоне между -20 и 55 °C.
- Соблюдать эксплуатационные условия.
- Соблюдать условия хранения.

7.3. ОБНОВЛЕНИЕ ВСТРОЕННОГО ПО

В постоянном стремлении предоставлять максимально высокий уровень обслуживания, обеспечивая высокие рабочие характеристики оборудования и идя в ногу с техническим прогрессом, компания Chauvin-Arnoux дает возможность обновления встроенного программного обеспечения данного прибора и бесплатной загрузки новой версии, доступной на нашем веб-сайте.

Адрес нашего веб-сайта:

www.chauvin-arnoux.com

Необходимо зайти в раздел «Техподдержка», затем «Загрузить ПО» и «PEL106».

Подключить прибор к ПК, используя USB-кабель, входящий в комплект-поставки.

ПО PEL Transfer уведомляет о наличии обновления и позволяет без труда его установить.

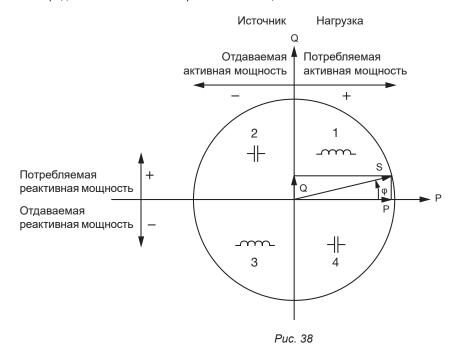
Обновление встроенного ПО может привести к сбросу настроек и потере сохраненных данных. В порядке меры предосторожности необходимо сохранять данные, содержащиеся в памяти ПК, прежде чем приступить к процедуре обновления встроенного ПО.

8. ГАРАНТИЯ

Наша гарантия действует в течение **двадцать четыре месяцев** с даты приобретения оборудования, если прямо не оговорено иное. Выписка из наших общих условий продажи предоставляется по требованию.

Гарантия не действует в следующих случаях:

- ненадлежащее использование прибора или использование с несовместимым оборудованием;
- любая модификация прибора без получения прямого разрешения от технического персонала производителя;
- выполнение операций технического обслуживания персоналом, не уполномоченным производителем;
- использование прибора не по назначению, как это указано в руководстве по эксплуатации;
- повреждения, возникшие в результате ударов, падения или затопления.


9. ПРИЛОЖЕНИЕ

9.1. ИЗМЕРЕНИЯ

9.1.1. ОПРЕДЕЛЕНИЕ

Вычисления выполняются в соответствии с требованиями стандартов МЭК 61557-12 и МЭК 61000-4-30 и IEEE 1459.

Геометрическое представление активной и реактивной мощности:

Квадранты даны для определения значений мощности основной частоты.

Точкой отсчета на данной схеме является вектор тока (зафиксированный в правой части оси).

Направление вектора напряжения V варьируется в зависимости от угла сдвига фаз ф.

Угол сдвига фаз φ между напряжением V и током I рассматривается как положительный в математическом значении термина (против часовой стрелки).

9.1.2. ВЫБОРКА

9.1.2.1. ПЕРИОД ВЫБОРКИ

Он зависит от частоты сети: 50, 60 или 400 Гц. Период выборки вычисляется каждую секунду.

- Частота сети: f = 50 Гц
 - В диапазоне между 42,5 и 57,5 Гц (50 Гц ± 15 %) период выборки синхронизирован с частотой сети. Для каждого периода сети доступны 128 выборок.
 - За пределами диапазона 42,5–57,5 Гц период выборки составляет 128 x 50 Гц.
- Частота сети: f = 60 Гц
 - В диапазоне между 51 и 69 Гц (60 Гц ± 15 %) период выборки синхронизирован с частотой сети. Для каждого периода сети доступны 128 выборок.
 - За пределами диапазона 51–69 Гц период выборки составляет 128 x 60 Гц.
- Частота сети: f = 400 Гц
 - В диапазоне между 340 и 460 Гц (400 Гц ± 15 %) период выборки синхронизирован с частотой сети. Для каждого периода сети доступны 16 выборок.
 - За пределами диапазона 340–460 Гц период выборки составляет 16 x 400 Гц.

Постоянный сигнал рассматривается за пределами диапазона частоты. Таким образом, частота выборки, в зависимости от предварительно выбранной частоты сети, составляет 6,4 кГц (50/400 Гц) или 7,68 кГц (60 Гц).

9.1.2.2. СИНХРОНИЗАЦИЯ ЧАСТОТЫ ВЫБОРКИ

- По умолчанию частота выборки синхронизируется по каналу V1.
- Если канал V1 отсутствует, то она пытается синхронизироваться по каналу V2, а затем V3, I1, I2 и I3.

9.1.2.3. ПОСТ./ПЕРЕМ. ТОК

Прибор PEL выполняет измерения переменного и постоянного тока для распределительных сетей переменного или постоянного тока. Выбор перем. тока или пост. тока осуществляется пользователем.

Значения перем.тока + пост. тока доступны с помощью ПО PEL Transfer.

9.1.2.4. ИЗМЕРЕНИЕ ТОКА НЕЙТРАЛИ

В зависимости от распределительной сети, если к клемме $I_{\scriptscriptstyle N}$ не подключен токовый датчик, то ток нейтрали вычисляется.

9.1.2.5. КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ «200 МС»

Прибор вычисляет следующие количественные показатели каждые 200 мс на основе измерений за 10 периодов для сети частотой 50 Гц, 12 периодов для сети частотой 60 Гц и 80 периодов для сети частотой 400 Гц в соответствии с табл. Таблица 22. Количественные показатели «200 мс» используются для:

- трендов по количественным показателям «1 с»
- агрегации значений для количественных показателей «1 с» (см. § 9.1.2.6)

Все количественные показатели «200 мс» могут храниться на SD-карте во время сеанса записи.

9.1.2.6. КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ «1 С» (ОДНА СЕКУНДА)

Прибор вычисляет следующие количественные показатели каждую секунду на основе измерений за 50 периодов для сети частотой 50 Гц, 60 периодов для сети частотой 60 Гц и 400 периодов для сети частотой 400 Гц в соответствии с табл. Таблица 22. Количественные показатели «1 с» используются для:

- значений в реальном времени,
- трендов,
- агрегации значений для «агрегированных» показателей (см. § 9.1.2.7),
- определения минимальных и максимальных значений для получения значений «агрегированных трендов».

Все количественные показатели «1 с» могут храниться на SD-карте во время сеанса записи.

9.1.2.7. АГРЕГАЦИЯ

Агрегированный количественный показатель — это значение, вычисленное за один период агрегации в соответствии с табл. Таблица 23.

Период агрегации всегда начинается с первой минуты часа или первой секунды минуты. Период агрегации одинаков для всех количественных показателей. Возможны следующие периоды: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60 мин.

Все агрегированные количественные показатели хранятся на SD-карте во время сеанса записи. Их можно отобразить в ПО PEL Transfer (см. § 5).

9.1.2.8. МИНИМАЛЬНЫЕ И МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ

Минимальные и максимальные значения — это значения наблюдаемые в течение заданного периода агрегации. Они регистрируются вместе с датой и временем (см. табл. Таблица 23). Некоторые агрегированные максимальные значения отображаются непосредственно на дисплее прибора.

9.1.2.9. ВЫЧИСЛЕНИЕ ПОКАЗАТЕЛЕЙ ЭНЕРГИИ

Показатели энергии вычисляются каждую минуту.

Значение общей энергии отображается по запросу во время сеанса записи.

Долевое значение энергии может быть определено за один период усреднения мощности со следующими значениями: 1 ч, 1 день, 1 неделя или 1 месяц. Отображение долевого показателя энергии доступно только в режиме реального времени. Он не регистрируется.

Зато значения общей энергии доступны вместе с данными сеанса записи.

9.2. ФОРМУЛЫ ИЗМЕРЕНИЙ

Большинство формул взяты из стандарта IEEE 1459.

Прибор PEL измеряет или вычисляет нижеследующие значения за один цикл (128 выборок за период и 16 выборок для за период при частоте 400 Гц). Данные значения недоступны для пользователя.

Затем прибор PEL вычисляет агрегированное значение за 10 циклов (50 Γ ц), 12 циклов (60 Γ ц) или 80 циклов (400 Γ ц), (количественные показатели «200 мс»), затем за 50 циклов (50 Γ ц), 60 циклов (60 Γ ц) или 400 циклов (400 Γ ц), (количественные показатели «1 с»).

Количественные показатели	Формулы	Комментарии
	Измерения перем. тока	
Пик-фактор напряжения перем. тока (V _{L-CF})	$V_{L-CF}[T] = \frac{\frac{1}{n} \times \sum_{x=1}^{n} V_{L-peak_x}}{V_L}$	L = 1, 2 или 3
Небаланс по напряжению обратной последовательности (перем. ток) (u ₂)	$u_2 = 100 \times \frac{V^-}{V^+}$	*
Небаланс по напряжению нулевой последовательности (перем. ток) (u _n)	$u_0 = 100 \times \frac{V^0}{V^+}$	*
Пик-фактор тока (I _{L-CF})	$I_{L-CF}[T] = \frac{\frac{1}{n} \times \sum_{x=1}^{n} I_{L-peak_x}}{I_L}$	L = 1, 2 или 3
Небаланс по току обратной последовательности (перем. ток) (i ₂)	$i_2 = 100 \times \frac{I^-}{I^+}$	*
Небаланс по току нулевой последовательности (перем. ток) (\mathbf{i}_0)	$i_0 = 100 \times \frac{I^0}{I^+}$	*
Реактивная мощность перем. тока (Q_L)	$Q_{L} = V_{L-H1} \times I_{L-H1} \times \sin \varphi (I_{L-H1}, V_{L-H1})$ $Q_{T} = Q_{1} + Q_{2} + Q_{3}$	L = 1, 2 или 3
Полная мощность перем. тока (S _L)	$S_L = V_L \times I_L$ $S_T = S_1 + S_2 + S_3$	L = 1, 2 или 3
Углы фазового сдвига основной частоты ϕ (I_{L} , V_{L}) ϕ (I_{L} , I_{M}) ϕ (I_{M} , I_{M})	Вычисление БПФ	φ — это сдвиг фаз между током основной частоты I _L и напряжением основной частоты V _L
Неактивная мощность перем. тока $(N_{\scriptscriptstyle L})$	$N_L = \sqrt{{S_L}^2 - {P_L}^2}$	L = 1, 2, 3 или Т
Мощность искажения перем. тока (D _L)	$D_L = \sqrt{N_L^2 - Q_L^2}$	L = 1, 2, 3 или Т
Квадрант (q)	Квадранты задаются следующим образом: ■ когда Pf _L [10/12] > 0 и Q _L [10/12] > 0: квадрант 1 ■ когда Pf _L [10/12] < 0 и Q _L [10/12] > 0: квадрант 2 ■ когда Pf _L [10/12] < 0 и Q _L [10/12] < 0: квадрант 3 ■ когда Pf _L [10/12] > 0 и Q _L [10/12] < 0: квадрант 4	
Активная мощность основной частоты (перем. ток) (Pf _L)	$Pf_{L} = V_{L-H1} \times I_{L-H1} \times \cos \varphi (I_{L-H1}, V_{L-H1})$ $Pf_{T} = Pf_{1} + Pf_{2} + Pf_{3}$	L = 1, 2 или 3
Активная мощность основной частоты прямой последовательности (перем. ток) (P+)	$P^{+} = 3 \times V^{+} \times I^{+} \times \cos \theta (I^{+}, V^{+})$	

Количественные показатели	Формулы	Комментарии
Полная мощность основной частоты (перем. ток) (Sf _L)	$Sf_{L} = V_{L-H1} \times I_{L-H1}$ $Sf_{T} = Sf_{1} + Sf_{2} + Sf_{3}$	L = 1, 2 или 3
Коэффициент мощности перем. тока (PF _L)	$PF_L = \frac{P_L}{S_L}$	L = 1, 2 или 3
Активная мощность разбалансировки фаз (перем. ток) (Pu)	$P_U = Pf_T - P^+$	
Активная мощность гармоник (перем. ток) (P _н)	$P_H = P_T - Pf_T$	
DPF _L / Cos φ _L (перем. ток)	DPF $_{\rm L}$ = $\cos \phi_{\rm L}$ = $\cos \phi ({ m I}_{ m L-H1}, { m V}_{ m L-H1})$ $\cos \phi_T = \frac{P f_T}{S f_T}$	L = 1, 2 или 3
Тап Ф (перем. ток)	$Tan\Phi = \frac{Q_T}{P_T}$	
	Измерения пост. тока	
Напряжение пост. тока (V _{Ldc})	$V_{Ld.c.}[T] = \frac{1}{n} \times \sum_{x=1}^{n} V_{Ld.c.x}$	L = 1, 2, 3 или Е
Постоянный ток (I _{Ldc})	$I_{Ld.c.}[T] = rac{1}{n} imes \sum_{x=1}^n I_{Ld.c.x}$ Если к клемме $\mathbf{I_N}$ не подключен токовый датчик, то $\mathbf{I_N}$ вычисляется по следующей формуле: $\mathbf{I_{Ndc}} = \mathbf{I_{1dc}} + \mathbf{I_{2dc}} + \mathbf{I_{3dc}}$	L = 1, 2, 3 или N
	Измерение параметров энергии	
Активная энергия прямого на- правления (перем. ток) (Е _{р+})	$E_{P+} = \sum P_{T+x}$	
Активная энергия обратного на- правления (перем. ток) (Е _{р.})	$E_{P-} = (-1) \times \sum P_{T-x}$	
Реактивная энергия в квадранте 1 (перем. ток) (E _{Q1})	$E_{Q1} = \sum Q_{Tq1_x}$	
Реактивная энергия в квадранте 2 (перем. ток) (E ₀₂)	$E_{Q2} = \sum Q_{T_{q2_x}}$	
Реактивная энергия в квадранте 3 (перем. ток) (E _{Q3})	$E_{Q3} = (-1) \times \sum Q_{T_{q3_x}}$	
Реактивная энергия в квадранте 4 (перем. ток) (E _{Q4})	$E_{Q4} = (-1) \times \sum Q_{T_{q4_x}}$	
Полная энергия прямого направления (перем. ток) (E _{s+})	$E_{S+} = \sum S_{T+x}$	
Полная энергия обратного направления (перем. ток) (E _{s.})	$E_{S-} = \sum S_{T-x}$	
Энергия прямого направления (пост. ток) (E _{Pdc+})	$E_{P_{dc^+}} = \sum P_{Tdc_{+x}}$	
Энергия обратного направления (пост. ток) (E _{Pdc} .)	$E_{P_{dc^-}} = (-1) \times \sum P_{Tdc_{-x}}$	

Таблица 22

Т соответствует периоду п соответствует числу выборок.
* : Для вычисления напряжений и токов прямой, обратной и нулевой последовательности (V+, I+, V-, I-, V°, I°) применяется преобразование Фортескью.

V1, V2, V3 — напряжения между фазой и нейтралью проверяемой сетевой установки. [V1=VL1-N; V2=VL2-N; V3=VL3-N]. Строчные литеры v1, v2, v3 обозначают выборочные значения.

U1, U2, U3 — напряжения между фазами проверяемой сетевой установки.

Строчные литеры обозначают выборочные значения [u12 = v1-v2 ; u23 = v2-v3 ; u31=v3-v1]. I1, I2, I3 — токи, протекающие по фазовым проводам сетевой установки. $I_{\rm N}$ соответствует току, протекающему по нулевому проводу проверяемой сетевой установки. Строчные литеры i1, i2, i3 обозначают выборочные значения.

Для некоторых величин, связанных с мощностью, количественные показатели «нагрузки» и «источника» вычисляются отдельно для получения агрегированных значений на основе значений «1 с».

Количественные показатели	Формулы	Комментарии
	Измерения перем. тока	
Активная мощность прямого направления (перем. ток) (P _{L+})	$P_{L+} = \frac{1}{n} \times \sum_{x=1}^{n} P_{L+x}$	L = 1, 2, 3 или Т
Активная мощность обратного направления (перем. ток) (P _L .)	$P_{L-} = (-1) \times \frac{1}{n} \times \sum_{x=1}^{n} P_{L-x}$	Р _L > 0 L = 1, 2, 3 или Т
Реактивная мощность прямого направления (перем. ток) (Q _{L+})	$Q_{L+} = \frac{1}{n} \times \sum_{x=1}^{n} Q_{L+x}$	Q_{L_+} может быть> 0 или < 0 Q_{L_+} [агр.] = Q_{L_1} [агр.] - Q_{L_4} [агр.] L = 1, 2, 3 или T
Реактивная мощность обратного направления (перем. ток) (Q _L)	$Q_{L-} = (-1) \times \frac{1}{n} \times \sum_{x=1}^{n} Q_{L-x}$	Q _L может быть > 0 или < 0 Q _L [arp.] = -Q _{L2} [arp.] + Q _{L3} [arp.] L = 1, 2, 3 или T
Полная мощность прямого направления (перем. ток) (S _{L+})	$S_{L+} = \frac{1}{n} \times \sum_{x=1}^{n} S_{L+x}$	S_{L_+} используется для вычисления PF_{L_+} и E_{L_+} . L = 1, 2, 3 или T
Полная мощность обратного направления (перем. ток) (S _L .)	$S_{L-} = \frac{1}{n} \times \sum_{x=1}^{n} S_{L-x}$	S_L используется для вычисления PF_ и E L = 1, 2, 3 или T
Активная мощность основной настоты прямого направления (перем. ток) (Pf _{L+})	$Pf_{L+} = \frac{1}{n} \times \sum_{x=1}^{n} Pf_{L+x}$ $Pf_{T+} = Pf_{1+} + Pf_{2+} + Pf_{3+}$	L = 1, 2 или 3
Активная мощность основной настоты обратного направления (перем. ток) (Pf _L)	$Pf_{L-} = \frac{1}{n} \times \sum_{x=1}^{n} Pf_{L-x}$	L = 1, 2, 3 или Т
Полная мощность основной настоты прямого направления (перем. ток) (Sf _{L+})	$Sf_{L+} = \frac{1}{n} \times \sum_{x=1}^{n} Sf_{L+x}$	L = 1, 2, 3 или Т
Полная мощность основной настоты обратного направления (перем. ток) (Sf _L .)	$Sf_{L-} = \frac{1}{n} \times \sum_{x=1}^{n} Sf_{L-x}$ $Sf_{T-} = Sf_{1-} + Sf_{2-} + Sf_{3-}$	L = 1, 2 или 3
Коэффициент мощности перем. тока прямого направления (PF _{L+})	$PF_{L+} = \frac{P_{L+}}{S_{L+}}$	L = 1, 2, 3 или Т
Коэффициент мощности перем. гока обратного направления (PF _L)	$PF_{L-} = \frac{P_{L-}}{S_{L-}}$	PF _L > 0 L = 1, 2, 3 или T
Cos ϕ_L перем. тока на нагрузке (Cos ϕ_{L^+})	$Cos \varphi_{L+} = \frac{Pf_{L+}}{Sf_{L+}}$	L = 1, 2, 3 или Т
Cos ϕ_L перем тока на источнике Cos ϕ_L)	$Cos \varphi_{L+} = \frac{Pf_{L+}}{Sf_{L+}}$ $Cos \varphi_{L-} = \frac{Pf_{L-}}{Sf_{L-}}$	Cos φ _L > 0 L = 1, 2, 3 или Т
Гап Φ перем. тока на нагрузке (Φ^+)	$Tan\Phi_{+} = \frac{Q_{T+}}{P_{T+}}$	

Количественные показатели	Формулы	Комментарии
Тап Ф перем. тока на источнике (Φ-)	$Tan\Phi_{-} = \frac{Q_{T-}}{P_{T-}}$	
	Измерения пост. тока	
Активная мощность прямого направления (пост. ток) (P _{L+dc})	$P_{L+d.c.} = \frac{1}{n} \times \sum_{x=1}^{n} P_{L+d.c.x}$	L = 1, 2, 3 или Т
Активная мощность обратного направления (пост. ток) (P _{L-dc})	$P_{L-d.c.} = (-1) \times \frac{1}{n} \times \sum_{x=1}^{n} P_{L-d.c.x}$	L = 1, 2, 3 или Т
	Измерения перем. тока + пост. тока	
Активная мощность прямого направления (перем. ток + пост. ток) (Р _{L+ ac+dc})	$P_{L+a.c.+d.c.} = P_{L+} + P_{L+d.c.}$	L = 1, 2, 3 или Т
Активная мощность обратного направления (перем. ток + пост. ток) (Р _{1 -асъсис})	$P_{L-a.c.+d.c.} = P_{L-} + P_{L-d.c.}$	L = 1, 2, 3 или Т
Полная мощность прямого направления (перем. ток + пост. ток) $(S_{L+ac+dc})$	$S_{L+a.c.+d.c.} = \frac{1}{n} \times \sum_{x=1}^{n} S_{L+a.c.+d.cx}$	L = 1, 2, 3 или Т
Полная мощность обратного направления (перем. ток + пост. ток) (S _{L-ac+dc})	$S_{L-a.c.+d.c.} = \frac{1}{n} \times \sum_{x=1}^{n} S_{L-a.c.+d.c.x}$	L = 1, 2, 3 или Т

Таблица 23

9.3. ДОПУСТИМЫЕ ТИПЫ ЭЛЕКТРОСЕТЕЙ

Принимаются в расчет следующие типы распределительных сетей:

Распределительная сеть	Условное обозначение	Порядок следо- вания фаз	Комментарии	Схема для справки
Однофазная (однофазная 2-проводная)	1P- 2W	Нет	Напряжение измеряется между L1 и N. Ток измеряется на проводе L1.	см. § 4.1.1
Двухфазная (с расщепленной фазой, однофаз- ная 3-проводная)	1P-3W	Нет	Напряжение измеряется между L1, L2 и N. Ток измеряется на проводах L1 и L2. Ток нейтрали измеряется или вычисляется по формуле: $i_N = i_1 + i_2$	см. § 4.1.2
Трехфазная 3-проводная, соединенная по схеме ∆ [2 токовых датчика]	3Π–3ΩΔ2		Метод измерения мощности основан на методе использования двух ваттметров с виртуальной нейтралью. Напряжение измеряется между L1, L2 и L3. Ток измеряется на проводах L1 и L3. Ток I2 вычисляется (к клемме L2 токовые датчики не подключены) по формуле: $i_2 = -i_1 - i_3$ Нейтраль недоступна для измерения тока и напряжения	см. § 4.1.3.1
Трехфазная 3-проводная, соединенная по схеме разомкнутого ∆ [2 токовых датчика]	3P-3WO2	Да		см. § 4.1.3.3
Трехфазная 3-проводная, соединенная по схеме Y [2 токовых датчика]	3P-3WY2			см. § 4.1.3.5

^{+ =} нагрузка

^{- =} источник

q = квадрант = 1, 2, 3 или 4

Распределительная сеть	Условное обозначение	Порядок следо- вания фаз	Комментарии	Схема для справки
Трехфазная 3-проводная, соединенная по схеме ∆ [3 токовых датчика]	3Π–3ΩΔ3	·		см. § 4.1.3.2
Трехфазная 3-проводная, соединенная по схеме разомкнутого ∆ [3 токовых датчика]	3P-3WO3	Да	Метод измерения мощности основан на методе использования трех ваттметров с виртуальной нейтралью. Напряжение измеряется между L1, L2 и L3. Ток измеряется на проводах L1, L2 и L3. Нейтраль недоступна для измерения тока и напряжения	см. § 4.1.3.4
Трехфазная 3-проводная, соединенная по схеме У [3 токовых датчика]	3P-3WY3			см. § 4.1.3.6
Трехфазная 3-проводная, соединенная по схеме Δ , симметричная	3Π–3ΩΔΒ	Нет	Измерение мощности основано на методе использования одного ваттметра. Напряжение измеряется между L1 и L2. Ток измеряется на проводе L3. $U_{23} = U_{31} = U_{12}.$ $I_1 = I_2 = I_3$	см. § 4.1.3.7
Трехфазная 4-про- водная, соединен- ная по схеме Y	3P-4WY	Да	Измерение мощности основано на методе использования трех ваттметров с нейтралью. Напряжение измеряется между L1, L2 и L3. Ток измеряется на проводах L1, L2 и L3. Ток нейтрали измеряется или вычисляется по формуле: $\mathbf{i}_{\rm N} = \mathbf{i}_{\rm 1} + \mathbf{i}_{\rm 2} + \mathbf{i}_{\rm 3}.$	см. § 4.1.4.1
Трехфазная 4-проводная, соединенная по схеме Y, симметричная	3P-4WYB	Нет	Измерение мощности основано на методе использования одного ваттметра. Напряжение измеряется между L1 и N. Ток измеряется на проводе L1. $V_1 = V_2 = V_3 \\ U_{23} = U_{31} = U_{12} = V_1 \times \sqrt{3}.$ $I_1 = I_2 = I_3 \\ I_N = 3 \times I_1$	см. § 4.1.4.2
Трехфазная 3-проводная, соединенная по схеме 2,5-элементной звезды	3P-4WY2	Да	Данный метод называется методом 2,5 элементов. Метод измерения мощности основан на методе использования трех ваттметров с виртуальной нейтралью. Напряжение измеряется между L1, L3 и N. V2 вычисляется по формуле: $v_2 = -v_1 - v_3$, $u_2 = 2v_1 + v_3$, $u_{23} = -v_1 - 2v_3$. v_2 считается симметричным. Ток измеряется на проводах L1, L2 и L3. Ток нейтрали измеряется или вычисляется по формуле: $i_N = i_1 + i_2 + i_3$.	см. § 4.1.4.3
Трехфазная 4-проводная, соединенная по схеме ∆	3P-4W∆	Нет	Измерение мощности основано на методе использования трех ваттметров с нейтралью, но ни один показатель мощности не доступен для каждой фазы. Напряжение измеряется между L1, L2 и L3.	см. § 4.1.5.1
Трехфазная 4-проводная, соединенная по схеме разомкнутого Δ	3P-4WO		Ток измеряется на проводах L1, L2 и L3. Ток нейтрали измеряется или вычисляется только для ветви трансформатора: $i_N = i_1 + i_2 + i_3$.	см. § 4.1.5.2
Сеть постоянного тока 2-проводная	DC-2W	Нет	Напряжение измеряется между L1 и N. Ток измеряется на проводе L1.	см. § 4.1.6.1
Сеть постоянного тока 3-проводная	DC-3W	Нет	Напряжение измеряется между L1, L2 и N. Ток измеряется на проводах L1 и L2. Отрицательный ток (обратный) измеряется или вычисляется по формуле: $i_{\rm N}$ = $i_{\rm 1}$ + $i_{\rm 2}$.	см. § 4.1.6.2
Сеть постоянного тока 4-проводная	DC-4W	Нет	Напряжение измеряется между L1, L2, L3 и N. Ток измеряется на проводах L1, L2 и L3. Отрицательный ток (обратный) измеряется или вычисляется по формуле: $i_N = i_1 + i_2 + i_3$.	см. § 4.1.6.3

Таблица 24

9.4. ВЕЛИЧИНА В ЗАВИСИМОСТИ ОТ ТИПА РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ

■ = Да= Нет

Количесть показа		1P-2W	1P-3W	3P-3W∆2 3P-3WO2 3P-3WY2	3P-3W∆3 3P-3WO3 3P-3WY3	3P-3W∆B	3P-4WY	3P-4WYB	3P-4WY2	3P-4W∆ 3P-4WO	DC-2W	DC-3W	DC-4W
V ₁	AC RMS	•	•				•	•	•	•			
V ₂	AC RMS		•				•	● = V ₁	● (10)	•			
V ₃	AC RMS						•	● = V ₁	•	•			
V _{NE}	AC RMS	•	•				•	•	•	•			
V ₁	DC										•	•	•
V ₂	DC											•	•
V ₃	DC												•
V_{NE}	DC	•	•				•	•	•	•	•	•	•
V ₁	AC + DC RMS	•	•				•	•	•	•			
V_2	AC + DC RMS		•				•	•(1)	•(10)	•			
V ₃	AC + DC RMS						•	•(1)	•	•			
$V_{_{\rm NE}}$	AC + DC RMS	•	•				•	•	•	•			
U ₁₂	AC RMS		•	•	•	•	•	● (1)	● (10)	•			
U ₂₃	AC RMS			•	•	•(1)	•	•(1)	•(10)	•			
U ₃₁	AC RMS			•	•	•(1)	•	•(1)	•	•			
I ₁	AC RMS	•	•	•	•	•	•	•	•	•			
l ₂	AC RMS		•	•(2)	•	•(1)	•	● (1)	•	•			
I ₃	AC RMS			•	•	•(1)	•	● (1)	•	•			
I _N	AC RMS		•			, ,	•	•	•	•			
I ₁	DC									_	•	•	•
I ₂	DC											•	•
l ₃	DC												•
I _N	DC											•	•
I ₁	AC + DC RMS	•	•	•	•	•(1)	•	•	•	•			
l ₂	AC + DC RMS		•	●(2)	•	•(1)	•	•(1)	•	•			
I ₃	AC + DC RMS			•	•	•	•	●(1)	•	•			
I _N	AC + DC RMS		•				•	•	•	•			
V _{1-CF}		•	•	ļ			•	•	•	•	ļ		
V _{2-CF}			•				•	•(1)	● (10)	•			
V _{3-CF}							•	•(1)	•	•			
I _{1-CF}		•	•	• (2)	•	• (4)	•	• (1)	•	•	-		
I _{2-CF}				●(2) ●	•	●(1) ●(1)	•	●(1) ●(1)	•	•			
V ₊				•	•	•	•	•	•(10)				
V				•	•	•(4)	•	•(4)	(10)				
V ₀				•	•	•(4)	•	•(4)	•(10)				
I ₊				•	•	•	•	•	•				
I,				•	•	•(4)	•	•(4)	•				

Количест показа		1P-2W	1P-3W	3P-3W∆2 3P-3WO2 3P-3WY2	3P-3W∆3 3P-3WO3 3P-3WY3	3P-3W∆B	3P-4WY	3P-4WYB	3P-4WY2	3P-4W∆ 3P-4WO	DC-2W	DC-3W	DC-4W
I _o				•	•	•(4)	•	•(4)	•				
u _o				•	•	•(4)	•	•(4)	•(4)	•(3)			
u ₂			ĺ	•	•	•(4)	•	•(4)	•(4)	•(3)	ĺ		
i _o				•	•	•(4)	•	•(4)	•	•(3)			
i ₂				•	•	•(4)	•	•(4)	•	•(3)			
F	İ	•	•	•	•	•	•	•	•	•	İ		
P ₁	AC	•	•				•	•	•	•			
P ₂	AC		•				•	● (1)	● (10)	•	1		
P ₃	AC			<u> </u>			•	•(1)	•	•			
P _T	AC	•(7)	•	•	•	•	•	● (1)	•	•	<u> </u>		
P ₁	DC							, , , , , , , , , , , , , , , , , , ,			•	•	•
P ₂	DC			1							<u> </u>	•	•
P ₃	DC			<u> </u>									•
P _T	DC			<u> </u>							•(7)	•	•
P ₁	AC+DC	•	•	1			•	•	•	•	- (')		
P ₂	AC+DC		•	1			•	•(1)	● (10)	•			
P ₃	AC+DC						•	•(1)	•	•			
P _T	AC+DC	•(7)	•	•	•	•	•	•(1)	•	•			
Pf ₁		•	•				•	•	•	•	<u> </u>		
Pf ₂			•	<u> </u>			•	● (1)	(10)	•			
Pf ₃							•	•(1)	•	•			
Pf _T		●(7)	•	•	•	•	•	•(1)	•	•	 		<u> </u>
P _₊	 	O (1)		•	•	•	•	•(1)	•		<u> </u>		<u> </u>
				•	•		•		•				<u> </u>
P _U				+		(4)	-	(4)			-		
P _h	<u> </u>	•	•	•	•	•	•	•	•		-		<u> </u>
Q ₁		•	•	_			•	•	•	•			
Q ₂			•	-			•	•(1)	(10)	•	ļ		
Q ₃							•	•(1)	•	•			
Q_{T}		•(7)	•	•	•	•	•	•(1)	•	•	ļ		
S ₁	AC	•	•				•	•	•	•			
S ₂	AC		•				•	•(1)	● (10)	•	ļ		
S_3	AC						•	●(1)	•	•			
S _T	AC	●(7)	•	•	•	•	•	● (1)	•	•			
S ₁	AC+DC	•	•				•	•	•	•			
S ₂	AC+DC		•				•	•(1)	(10)	•			
S ₃	AC+DC						•	•(1)	•	•			
S _T	AC+DC	•(7)	•	•	•	•	•	● (1)	•	•			
Sf ₁		•	•	1			•	•	•	•			İ
Sf ₂			•				•	•(1)	•(10)	•			
Sf ₃				1			•	•(1)	•	•			
Sf _T		•(7)	•	•	•	•	•	● (1)	•	•			
N ₁	AC	•	•				•	•	•	•			
N ₂	AC		•	 			•	•(1)	•(10)	•			
N ₃	AC			+			•	•(1)	•	•			
	AC	A /=:	•	•	•	•	•		•	•			
N _T	_	(7)	_	—				•(1)					
N ₁	AC+DC	•	•	-			•	•	•	•	<u> </u>		<u> </u>
N ₂	AC+DC		•	-			•	•(1)	•(10)	•			<u> </u>
N ₃	AC+DC						•	•(1)	•	•	<u> </u>	<u> </u>	
N _T	AC+DC	•(7)	•	•	•	•	•	●(1)	•	•			

Количесте показат		1P-2W	1P-3W	3P-3W∆2 3P-3WO2 3P-3WY2	3P-3W∆3 3P-3WO3 3P-3WY3	3P-3W∆B	3P-4WY	3P-4WYB	3P-4WY2	3P-4W∆ 3P-4WO	DC-2W	DC-3W	DC-4W
D ₁	AC	•	•				•	•	•	•			
D ₂	AC		•				•	•(1)	● (10)	•			
D_3	AC						•	•(1)	•	•			
$D_{\scriptscriptstyle T}$	AC	•(7)	•	•	•	•	•	•(1)	•	•			
D ₁	AC+DC	•	•				•	•	•	•			
D ₂	AC+DC		•				•	●(1)	•(10)	•			
D ₃	AC+DC						•	●(1)	•	•			
D_{T}	AC+DC	•(7)	•	•	•	•	•	●(1)	•	•	ĺ		
PF ₁		•	•				•	•	•	•		İ	
PF ₂			•				•	●(1)	● (10)	•			
PF ₃							•	● (1)	•	•			
PF _T		•(7)	•	•	•	•	•	● (1)	•	•			
Cos φ ₁		•	•				•	•	•	•			
Cos φ ₂			•				•	•(1)	● (10)	•			
Cos φ ₃							•	•(1)	•	•			
Cos φ _T		•(7)	•	•	•	•	•	•(1)	•	•			
Tan Φ		•	•	•	•	•(3)	•	•	(10)	•			
V₁-Hi		•	•			(6)	•	•	•	•		 	
V ₂ -Hi	i=1 до 50		•				•	•(1)	•(10)	•	-	 	
V ₂ · · · · · · · · · · · · · · · · · · ·	(6) %f			 			•	•(1)	(10)	•		 	_
			•	•	•	•	•			•			
U ₁₂ -Hi	i=1 до 50		_	•	•		•	(1)	(10)	•		-	
U ₂₃ -Hi	(6) %f					•(1)		(1)	(10)			-	
U ₃₁ -Hi				•	•	•(1)	•	•(1)	•	•		-	
I₁-Hi	i=1	•	•	•	•	•	•	•	•	•			
I ₂ -Hi	до 50 (6)		•	•(2)	•	•(1)	•	•(1)	•	•			
I ₃ -Hi	(6) %f			•	•	•(1)	•	•(1)	•	•		-	<u> </u>
I _N -Hi		_	•(2)	-			•(2)	•(4)	•(2)	•(2)		-	
V ₁ -THD	%f	•	•	-			•	•	•	•		<u> </u>	
V ₂ -THD	%f		•	-			•	•(1)	● (10)	•		-	
V ₃ -THD	%f						•	•(1)	•	•			
U ₁₂ -THD	%f		•	•	•	•	•	•(1)	•	•	ļ		
U ₂₃ -THD	%f			•	•	•(1)	•	•(1)	•	•		ļ	
U ₃₁ -THD	%f			•	•	•(1)	•	•(1)	•	•			
I₁-THD	%f	•	•	•	•	•	•	•	•	•			
I ₂ -THD	%f		•	•(2)	•	•(1)	•	●(1)	•	•			
I₃-THD	%f			•	•	●(1)	•	●(1)	•	•			
I _N -THD	%f		•(2)				•(2)	•(4)	•(2)	•(2)			
Порядок	I			•	•	•	•		•	•			
следова-	V			•	•	•	•		•	•			
ния фаз	I, V	•	•	•	•	•	•	•	•	•			
$\varphi(V_2, V_1)$			•				•	•(9)					
$\varphi(V_3, V_2)$							•	•(9)					
$\varphi(V_1, V_3)$							•	•(9)	•	•			
φ(U ₂₃ , U ₁₂)				•	•	•(9)	•	•(9)		•			
$\varphi(U_{12}, U_{31})$				•	•	•(9)	•	•(9)		•			
$\varphi(U_{31}, U_{23})$				•	•	•(9)	•	•(9)		•			
$\varphi(l_2, l_1)$	$\vdash \vdash \vdash$		•		•	•(9)	•	(9)	•	•			
$\varphi (l_3, l_2)$	$\vdash \vdash \vdash$				•	•(9)	•	● (9)	•	•			
$\varphi(l_3, l_2)$ $\varphi(l_1, l_3)$	$\vdash \vdash \vdash$			•	•	(9)	•	(9)	•	•		 	

Количести показа		1P-2W	1P-3W	3P-3W∆2 3P-3WO2 3P-3WY2	3P-3W∆3 3P-3WO3 3P-3WY3	3P-3W∆B	3P-4WY	3P-4WYB	3P-4WY2	3P-4W∆ 3P-4WO	DC-2W	DC-3W	DC-4W
$\varphi(I_1, V_1)$		•	•			●(8)	•	•	•	•			
$\varphi(I_2, V_2)$			•				•	•					
$\varphi(I_3, V_3)$							•	•	•	•			
E _{PT}	Источник АС	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{PT}	Нагрузка АС	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{QT}	Квадр. 1	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{QT}	Квадр. 2	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{ot}	Квадр. 3	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{ot}	Квадр. 4	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{st}	Источник	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{st}	Нагрузка	•	•	•	•	•	•	•	•	•	•(5)	•(5)	•(5)
E _{PT}	Источник DC	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•	•	•
E _{PT}	Нагрузка DC	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•(5)	•	•	•

Таблица 25

- (1) Экстраполированное значение
- (2) Вычисленное значение
- (3) Непоказательное значение
- (4) Всегда = 0
- (5) AC+DC, когда выбрано
- (6) макс. 7 порядков при 400 Гц
- (7) $P_1 = P_T$, $\varphi_1 = \varphi_T$, $S_1 = S_T$, $PF_1 = PF_T$, $Cos \varphi_1 = Cos \varphi_T$, $Q_1 = Q_T$, $N_1 = N_T$, $D_1 = D_T$
- (8) $\varphi(I_3, U_{12})$
- (9) Bceгда = 120°
- (10) Интерполированное значение

9.5. ГЛОССАРИЙ

ф Фазовый сдвиг напряжения (фаза-нейтраль) относительно тока (фаза-нейтраль).

фазовый сдвиг в цепи с индуктивным сопротивлением.

фазовый сдвиг в цепи с емкостным сопротивлением.

° Градус. % Процент.

A Ампер (единица измерения силы тока).

АС Переменная составляющая (тока или напряжения).

APN Идентификатор точки доступа к сети (Access Point Name, имя точки доступа). Зависит от вашего интернет-про-

вайдера

СF Пик-фактор тока или напряжения: соотношение пикового значения сигнала к действительному значению.

соѕ ф Косинус фазового сдвига напряжения (фаза-нейтраль) относительно тока (фаза-нейтраль).

D Мощность искажения.

DC Постоянная составляющая (тока или напряжения).

 Ep
 Активная энергия.

 Eq
 Реактивная энергия.

 Es
 Полная энергия.

f (частота) Число полных периодов изменения напряжения или тока в секунду.

GPRS Услуга пакетной передачи данных по радиоканалу. Передача данных, кроме голосовых (2,5G или 2G+)

GSM Глобальная система мобильной связи. Передача голосовых данных (2G).

Hz Герц (единица измерения частоты).

 I
 Символ силы тока.

 I-CF
 Пик-фактор тока.

I-THD Полное гармоническое искажение тока.

 I_L Действительное значение силы тока (L = 1, 2 или 3)

 I_{L-Hn} Значение или процентное отношение тока гармоники n-го порядка (L = 1, 2 или 3).

L Фаза многофазной электрической сети.

 MAX
 Максимальное значение.

 MIN
 Минимальное значение.

 N
 Неактивная мощность.

 Р
 Активная мощность.

PF Коэффициент мощности (Power Factor): соотношение активной мощности к полной мощности.

Q Реактивная мощность.

RMS (Root Mean Square) среднеквадратическое значение тока или напряжения. Квадратный корень из средне-

арифметического значения квадратов мгновенных значений количественного показателя за заданный интервал

времени.

S Полная мощность.

tan Ф Соотношение реактивной мощности к активной мощности.

THD Полный коэффициент гармонических искажений (Total Harmonic Distortion). Он описывает пропорцию гармоник

сигнала по отношению к действительному значению основной составляющей или общему действительному

значению без постоянной составляющей.

U Напряжение между двумя фазами.U-CF Пик-фактор напряжения между фазами.

u2 Небаланс напряжений межу фазой и нейтралью.

U_{L-Hn} Значение или процентное отношение напряжения между фазами к гармонике n-го порядка (L = 1, 2 или 3)

UMTS Универсальная мобильная телекоммуникационная система (3G).

Uxy-THD Полный коэффициент гармонических искажений напряжения между двумя фазами. **V (B)** Напряжение между фазой и нейтралью или Вольт (единица измерения напряжения).

V-CF Пик-фактор напряжения

V-THD Коэффициент гармонических искажений напряжения между фазой и нейтралью.

VA (В·A) Единица измерения полной мощности (Вольт-ампер).

var (вар) Единица измерения реактивной мощности. varh (вар·ч) Единица измерения реактивной энергии.

V, Действительное значение напряжения (L = 1, 2 или 3)

V_{тыв} Значение или процентное отношение напряжения между фазой и нейтралью к гармонике n-го порядка (L = 1, 2

или 3).

W (Вт) Единица измерения активной мощности (Ватт). **Wh (Вт·ч)** Единица измерения активной энергии (Ватт-час).

Агрегация Различные способы, указанные в § 9.2.

Асимметрия напряжения многофазной сети: Состояние, при котором эффективные значения напряжений между проводниками

(основная составляющая) и/или разницы между фазами последовательных проводников не равны.

Сервер IRD Сервер для ретрансляции данных через интернет. Сервер, обеспечивающий ретрансляцию данных между

регистратором и ПК.

Гармоники В электрических системах это напряжения и токи, которые являются кратными значениями основной частоты.

Метод измерения: Любой метод, связанный с отдельным конкретным измерением.

Небаланс напряжений многофазной сети: Состояние, при котором действительные значения напряжений между проводниками (основная составляющая) и/или разницы между фазами последовательно соединенных проводников не равны.

Номинальное напряжение: Номинальное напряжение сети.

Основная составляющая: составляющая основной частоты.

Порядок гармоники: отношение частоты гармоники к основной частоте; целое число.

Фаза Временная связь между током и напряжением в цепях переменного тока.

Приставки единиц измерения международной системы (СИ)

Приставка	Обозначение	Коэффициент				
милли-	МЛ	10 ⁻³				
кило-	К	10³				
мега-	М	10 ⁶				
гига-	Γ	10°				
тера-	Т	10 ¹²				
пета-	П	10 ¹⁵				
экса-	Э	10 ¹⁸				

Таблица 26

FRANCE Chauvin Arnoux Group

190, rue Championnet 75876 PARIS Cedex 18 Tél: +33 1 44 85 44 85

Fax: +33 1 46 27 73 89 info@chauvin-arnoux.com www.chauvin-arnoux.com

INTERNATIONAL Chauvin Arnoux Group

Tél: +33 1 44 85 44 38 Fax: +33 1 46 27 95 69

Our international contacts

www.chauvin-arnoux.com/contacts

